
Formal Specification and Decentralized
Implementation of Monopoly Using

TLA+ and Git
Bachelor Thesis

University of Basel - Faculty of Science

Department of Mathematics and Computer Science

Computer Networks Group

https://cn.dmi.unibas.ch

Examiner: Prof. Dr. Christian Tschudin

Supervisor: Dr. Erick Lavoie

Luca Gloor

luca.gloor@stud.unibas.ch

17.06.2025

https://cn.dmi.unibas.ch
mailto:luca.gloor@stud.unibas.ch

Acknowledgments

First and foremost, I want to thank Prof. Dr. Tschudin and Dr. Erick Lavoie for the oppor-

tunity to work on this thesis. I especially thank Dr. Erick Lavoie for his guidance, expertise,

and patience in supervising this thesis.

I would also like to express my gratitude to Tim Matter for introducing me to his

implementation of the board game Catan. This helped me a lot to quickly setup a working

foundation for this project.

Lastly, I want to thank Miriam Märki for her constant support and encouragement.

Abstract

Guaranteeing correctness of decentralized applications is a big challenge due to the com-

plexity of concurrent behaviours. In this thesis, we formally specify and implement the

board game Monopoly as a decentralized application to address this problem. Using the

formal specification language TLA+, we model the core mechanics of the game, including

randomness and auctions. We further introduce a verifiable auction protocol which is refined

in multiple abstraction levels, with each refinement preserving the correctness properties of

termination, agreement, validity, and integrity.

We implement the game using Git to synchronize the game state between players, omit-

ting the need for a centralized server. The state is represented in a YAML file and player

actions are modelled as Git commits, where each commit contains the new state.

Correctness of the design is validated by model checking with TLC and we evaluate

the implementation using simulations. Additionally, we analyze the performance of the

implementation on metrics including action latency and storage use. The results show the

feasibility of using formal methods for multiplayer game logic, providing a framework for

decentralized application development.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 2

2.1 Mechanics of Monopoly . 2

2.1.1 Components . 2

2.1.2 Setup . 2

2.1.3 Phases of a Turn . 2

2.1.4 Win Condition . 3

2.2 TLA+ . 3

2.2.1 Definition . 3

2.2.2 Sets . 4

2.2.3 Functions . 4

2.2.4 Function Operators . 4

2.2.5 Sequences . 4

2.2.6 Records . 4

2.2.7 Constants . 5

2.2.8 Variables . 5

2.2.9 Primed Variables . 5

2.2.10 Stuttering Steps . 5

2.2.11 Weak Fairness . 5

2.3 Append-Only Logs . 5

2.4 Git . 6

2.4.1 Commit . 6

2.4.2 Remote . 6

2.4.2.1 Push . 6

2.4.2.2 Fetch . 7

3 Design 8

3.1 General Approach Using TLA+ . 8

3.2 Monopoly . 9

3.2.1 State Representation . 9

3.2.2 Properties . 9

Table of Contents v

3.2.3 Initial State . 10

3.2.4 Actions . 10

3.2.4.1 Mortgaging a Property . 10

3.2.4.2 Rolling While Not in Jail . 11

3.2.4.3 Rolling While in Jail . 12

3.2.4.4 Paying Rent for Utilities . 13

3.2.4.5 Drawing Chance/Community Chest Cards 14

3.3 Auction . 15

3.3.1 Properties . 15

3.3.1.1 Termination . 15

3.3.1.2 Agreement . 16

3.3.1.3 Validity . 16

3.3.1.4 Integrity . 16

3.3.2 Abstract Model (Auction1) . 17

3.3.2.1 State Representation . 17

3.3.2.2 Actions . 17

3.3.2.3 Weak Fairness Assumptions 18

3.3.3 Round-Based Model (Auction2) . 19

3.3.3.1 Withdrawing from an Auction 19

3.3.3.2 Concept of a Round . 19

3.3.3.3 Constraints on Bidding . 20

3.3.3.4 Determining a Winner . 20

3.3.4 Append-Only Log Refinement (Auction3) 20

3.3.4.1 Mapping of Actions from Round-Based Model 20

3.3.4.2 Further Bidding Restrictions 21

3.3.4.3 Merging Frontiers . 21

4 Implementation 23

4.1 State Representation . 23

4.2 Action Execution . 23

4.3 Action Broadcasting and Synchronization . 25

4.3.1 Asynchronous Push . 25

4.4 Game Initialization . 25

4.4.1 Human-Playable . 26

4.4.1.1 Creating a New Game . 26

4.4.1.2 Joining a New Game . 26

4.4.1.3 Rejoining an Active Game 27

4.4.2 Simulation . 27

5 Evaluation 28

5.1 Correctness . 28

5.1.1 Verifying the Design . 28

5.1.1.1 Model-Checking with TLC 28

5.1.1.2 Auction . 29

5.1.1.3 Monopoly . 30

5.1.2 Verifying the Implementation . 32

Table of Contents vi

5.2 Performance . 33

5.2.1 Local Action Execution . 33

5.2.2 Network Considerations . 33

5.2.3 Number of Commits per Game . 34

5.2.4 Disk Usage . 34

6 Related Work 37

6.1 Monopoly Implementations . 37

6.2 Append-Only Log Applications . 37

6.3 Formal Specifications of Games . 37

6.4 Relationship of Auction Protocols to Consensus 38

6.5 Other Applications of TLA+ . 38

7 Conclusion 39

7.1 Future Work . 39

7.2 Impact of this Thesis . 39

Bibliography 41

Appendix A Monopoly TLA+ Specification 43

Appendix B Auction1 TLA+ Specification 65

Appendix C Auction2 TLA+ Specification 68

Appendix D Auction3 TLA+ Specification 72

1
Introduction

Ensuring correctness of decentralized applications is a well-known challenge in Computer

Science. As these applications grow in complexity, so does the difficulty of verifying their

behaviour in concurrent environments. This challenge is particularly relevant in systems that

require consistency and coordination, as is the case in multiplayer games, where unexpected

behaviour can easily emerge from seemingly harmless local actions. An option to manage

this difficulty is to use formal specification languages to mathematically model applications

and verify their possible behaviours before implementation.

The goal of this thesis is to formally specify and implement the board game Monopoly as

a decentralized application while ensuring, that the core mechanics of the game are verifiable.

This includes interactions such as auctions, turn-based play, and randomness. Additionally,

we show how a decentralized version of Monopoly can be implemented using append-only

logs and Git for synchronization between participants.

To address these challenges, we present several novel contributions. First, we develop

a TLA+ specification of Monopoly. This includes a verifiable auction protocol which is

refined in multiple abstraction levels. In each step, we prove that the correctness properties

of termination, agreement, validity, and integrity, which we formally define, are preserved.

Second, we show how this specification is implemented using YAML to represent the state,

encoding player actions as Git commits and utilizing Git replication operations between

repositories to synchronize the game state between participants. With this approach, we

eliminate the need for a centralized server while maintaining correct game progression.

We structure the thesis as follows: In Chapter 2 we provide background on Monopoly,

TLA+, append-only logs and Git. Chapter 3 shows the design of the game and the auction

protocol using TLA+. We present the implementation from the specification to a playable

multiplayer-game in Chapter 4. In Chapter 5 we evaluate both the design and its imple-

mentation through model checking and simulation tests while also checking the performance

of the implementation in terms of delay and storage consumption. We discuss related work

in Chapter 6, including contributions in model specification, and distributed applications.

Finally, Chapter 7 concludes the thesis and provides possible directions for future work.

In Appendix A, we provide the TLA+ model for Monopoly and the specifications of the

auction procotol in Appendix B, C, and D. All source code is provided on Github.1

1 Specifications: https://github.com/lgloor/bachelor-thesis-tla-specs,
Implementation: https://github.com/lgloor/monopoly

https://github.com/lgloor/bachelor-thesis-tla-specs
https://github.com/lgloor/monopoly

2
Background

In this chapter we give an overview of the topics and concepts which are used in the later

chapters of this thesis. We provide a brief outline of the core mechanics of the board game

Monopoly. Afterwards, we introduce the specification language TLA+ and a summary of

its most important concepts and notations. Lastly, we present the append-only log data

structure before showing how we use Git, an implementation of append-only logs, to update

replicas in our decentralized Monopoly application.

2.1 Mechanics of Monopoly
Monopoly is a competitive turn-based board game. The goal of each player is to prevent

going bankrupt by obtaining properties, on which other participants must pay rent when

landing on them. In the following sections, we summarize the core concepts we use to later

formally specify and implement the game.

2.1.1 Components
A standard Monopoly board consists of 40 spaces which are categorized into property

(streets, railroads, and utilities), Chance, Community Chest, Jail, Go to Jail, Free Parking,

and Go spaces. The amount of money is limited to a pre-defined amount ($118,660 in

modern versions). It comes with two sets of cards, one for Community Chest and the other

for Chance which are drawn when landing on the respective squares.

2.1.2 Setup
In the beginning, the token of each player is placed on the Go square. Every participant

gets a fixed amount of money (usually $1,500). All properties belong to the bank and the

cards of the Chance and Community Chest decks are shuffled.

2.1.3 Phases of a Turn
The turn of a player, hereafter called the active player, is divided into four phases:

1. Before rolling, the active player can mortgage, unmortgage, upgrade, or downgrade

any properties they own.

Background 3

2. Roll the two dice and move the corresponding amount of squares.

3. Perform any action that is associated with the square landed on. This may involve:

• Purchasing a property if it is unowned and the player has enough money to afford

it.

• Auctioning a property when unowned and the player cannot afford or does not

want to buy it.

• Paying rent if the property is owned by another player.

• Drawing a card from the Chance or Community Chest deck.

• Paying tax.

• Doing nothing, if the space belongs to the active player, is mortgaged or inherently

requires no action.

If the active player has rolled the same number with both dice, they will get to roll

again, unless they have rolled doubles for the third consecutive time, in which case

they must go to jail.

4. Before the active turn is given to the next player, all participants are allowed to

mortgage, unmortgage, upgrade, or downgrade any of their owned properties.

2.1.4 Win Condition
When a player cannot come up with enough money to pay off an owed debt, e.g. rent when

landing on a owned property or tax on a tax square, they go bankrupt to the corresponding

creditor of the debt, which can either be another player or the bank. In this case, all of

their assets are transferred to the creditor, and they are out of the game. The game ends

when all participants except one have gone bankrupt. The remaining player is declared the

winner.

2.2 TLA+
TLA+ [8] is a language used to formally specify the behaviours of concurrent systems.

It was invented by Leslie Lamport and is based on discrete mathematics and temporal logic.

Specifications can be written in the TLA+ Toolbox, an IDE for TLA+ which also comes

with a model checker called TLC. The model checker allows us to simulate all possible

behaviours of the specified system. This helps identifying errors and violations of defined

properties. In the following subsections, we introduce the notation we use in Chapter 3 for

specifying the design.

2.2.1 Definition
For definitions, TLA+ uses ”=∆”. This is used when defining new operators or local

variables in LET ... IN ... blocks. In code, the definition symbol is typed ==.

Background 4

2.2.2 Sets
Sets of elements are defined with {e1, e2, . . . , en}. For the set of integers from lower

up to and including upper, we can use the integer range notation lower..upper. If

lower > upper, we obtain the empty set. To get the cardinality of set S, we write

Cardinality(S).

2.2.3 Functions
Functions, or mappings, can be explicitly defined by specifying what elements of the

domain map to in the corresponding range e.g., we can define the function f from natural

numbers to strings only at two points using f =∆ [2 7→ ”two”, 7 7→ ”seven”].

Another way is to specify the result of a function for all values in the domain. For

this, we use [x ∈ S 7→ e], where S is the domain of the function and e is an expression.

For example, to define the function g, mapping the numbers 1..5 to their square, we write

g =∆ [x ∈ 1..5 7→ x ∗ x].
Additionally, to obtain the set of all possible mappings from S to T , with S, T both

sets, defining the domain and the range, we use [S → T]. Notice that the arrows used are

different. While for explicit definitions we use ”|->”, to specify the set of all functions we

write ”->”.

2.2.4 Function Operators
To simplify working with functions, TLA+ offers a couple of operators:

Using the DOMAIN operator, we get the set of all values, for which the function is defined.

To illustrate, DOMAIN f would give us {2, 7}. We retrieve values of a function with f [i],

where i ∈ DOMAIN f.

The EXCEPT operator allows us to define the function f̂ equal to f with the exception of

some changes. This omits the need to repeat all values of the function that should remain

the same. For example, to define function h, equal to g from Section 2.2.3 except that

h[1] = 0 and h[3] = −1, we write:

h =∆ [f EXCEPT ![1] = 0,

![3] = −1]

2.2.5 Sequences
Sequences, also called tuples or lists, in TLA+ are special functions whose domain is

the integer range 1..n where n is the length of the sequence. They are created using

⟨s1, s2, . . . , sn⟩ which is written in code as <<s1, s2, . . . , sn>>. Unlike most programming

languages, indexing of sequences starts at one. Elements of sequences are retrieved the

same way as in functions by using their corresponding index. Thus, to access si of sequence

S =∆ ⟨s1, s2, . . . , sn⟩, we write S[i], where i ∈ 1..n.

2.2.6 Records
Another special subset of functions are records. Records are functions whose domain

consists only of strings. They can be compared to structs in C-like programming languages

and are very helpful for grouping attributes together in a coherent way. For records, TLA+

Background 5

offers syntactic sugar which simplifies accessing their values. For example, to obtain the

value of field ”f1” in record r, we either use r[”f1”] or the simplified r.f1, omitting the

quotation marks and square brackets.

2.2.7 Constants
In TLA+, constants are defined using CONSTANTS C1, C2, . . . , Cn where Ci is a place-

holder for any identifying name. There may be no two constants with the same name. The

value of a constant is not allowed to change at any point in the specification. When model

checking with TLC, the values of the declared constants must be assigned in the What is

the model? section of the TLA+ Toolbox.

2.2.8 Variables
Similar to defining constant values, variables are declared using the VARIABLES keyword.

Unlike constants, variables are allowed to change when stepping from one state to the next.

Their initial values are assigned in the Init operator of the specification.

2.2.9 Primed Variables
In order to define how a variable is changed after an action has been complete, we use the

name of the variable with an apostrophe (prime). For example, to specify that variable x is

incremented by one in the next step, we write x′ = x+1. In contrast to usual programming

languages, we are also required to specify all variables that do not change in an action.

Because writing v′ = v for each unchanged variable can be tedious, TLA+ offers the operator

UNCHANGED ⟨v1, v2, . . . , vm⟩ as shorthand notation for v′1 = v1 ∧ v′2 = v2 ∧ . . . ∧ v′m = vm.

2.2.10 Stuttering Steps
A stuttering step is a transition where the state of the system does not change, meaning

that the value of all variables remain the same. Stuttering steps are a necessary feature

of TLA+, which allows specifications to abstract over time and implementation details. In

multiprocess systems, it often occurs that some processes make progress while others remain

idle. Essentially, these idle processes experience stuttering steps.

2.2.11 Weak Fairness
TLA+ allows an infinite amount of consecutive stuttering steps to occur. This can make

it hard to make assertions on things that must eventually happen in a system. For this,

TLA+ offers the concept of weak fairness assumptions written as WFvars(A) where vars is

the sequence of all variables of the specification. This allows us to assert that if action A

remains continuously enabled, then an A step must eventually occur. In code, we write this

as WF vars(A).

2.3 Append-Only Logs
An append-only log is a data structure in the form of a ”totally-ordered replicated list of

messages, such that each index has at most one unique message associated to it and indexes

Background 6

are associated with new messages from lowest to greatest.” [10]. Its key property is that

new messages can only be appended to the end of the log. After a message is appended it

must never be modified or removed.

This makes append-only logs a suitable data structure for decentralized applications.

When receiving updates from peers it becomes immediately clear, whether all received mes-

sages have already been replicated or if some are new compared to the local replica. In the

latter case, the missing messages are simply appended to one’s own replica of the log.

2.4 Git
Its official website defines Git as ”a free and open source distributed version control

system [. . .].” [1]. It is based on append-only directed acyclic graphs of commits, in the sense

that each change (i.e. addition, modification, or removal) to any files requires appending a

new message. This way, Git can maintain a reliable history of all modifications. In the

following sections, we assume basic knowledge of Git and only introduce concepts which we

use for the implementation in Chapter 4.

2.4.1 Commit
Commits in Git are objects that represent a snapshot of a replica at a given point in

time. While they are very intricate in detail, it is only relevant for us that they contain the

following information:

1. References to zero or more parent commits specifying the previous state.

2. The new state of file(s) after the applied changes.

3. A message used to describe the applied changes.

When adding a new commit at the end of linear commit history, this corresponds to append-

ing a new message in an append-only log. In our implementation, we use commit objects to

represent all the actions that players have taken in the game.

2.4.2 Remote
A Git remote is a reference to a Git repository behind a corresponding URL, which is

typically hosted on a remote server (e.g. Github). The most common remote is called origin

which is the default name when cloning a Git repository from a server. While the origin

remote is created automatically when cloning a remote repository, others can manually be

added using git remote add <name> <URL>. To propagate changes between local and

remote git repositories, Git offers the following operations:

2.4.2.1 Push

The git push operation is used to upload local changes to a remote repository. For ex-

ample, git push origin main replicates the latest commits from the local main branch

to the main branch of the remote called origin.

Background 7

2.4.2.2 Fetch

In contrast to pushing, git fetch is used to download updates from a remote repos-

itory. The retrieved changes are not directly included in the local replica and must be

merged manually. To fetch from the main branch of the origin remote, we execute git

fetch origin main.

3
Design

This chapter introduces the design of Monopoly as a whole and in a more specific fashion,

an auction protocol which can be used in the game’s implementation. The designs are

written in TLA+, a formal specification language created by Leslie Lamport which not only

helps us to define the applications behaviour and structure but also allows us to verify the

correctness of the design in Section 5.1. We first show how we approach system specifications

in general. AFterwards, we go into more detail for the specific applications of Monopoly

and the auction mechanism. For the auction protocol in particular, we also demonstrate

how to use refinement to prove that one specification implies another.

3.1 General Approach Using TLA+
When specifying a system or algorithm in TLA+ it is important to first think about how

the current state is represented. We do this using constant values that stay the same over

all behaviors, and variables that are allowed to change when transitioning from one state to

the next.

Next we define the properties we want the design to have:

1. Safety properties are assertions on what the system is allowed to do in each possible

behavior of the system. They may apply on a single state, in which case they are called

invariants, or steps (that is pairs of subsequent states) to constrain allowed transitions.

An example in Monopoly would be that the total amount of money in play is always

equal to some pre-defined number. Convention is that every specification defines a

TypeOK invariant which is responsible for checking that the values of all variables are

within their expected range.

2. Liveness properties define conditions that must eventually hold in all possible be-

haviors of the system. One such property could be termination which specifies that

all behaviors must eventually halt, i.e. end in an infinite sequence of stuttering steps.

In a third step, we define the set of initial states the system can take on. We do this by

specifying the range of values that each variable can take on in a valid initial state.

Lastly, we specify all possible actions that lead from one state to a next one. We do this

by describing the required pre-conditions for an action to be enabled, and the ways in which

the variables do or do not change when the action is taken.

Design 9

3.2 Monopoly
In this section we specify the design for Monopoly using the four-step approach from

Section 3.1. We do not cover all actions of the specification as this would go into too much

detail. For reference, the full design can be seen in Appendix A.

3.2.1 State Representation
The most important constant values for the state of Monopoly are:

1. NumPlayers: The amount of players participating in the game.

2. StartingMoney: The amount of money that each player starts with.

3. TotalMoney: The total amount of money in play.

The other constants can be seen in Appendix A. They are either model values, relevant

for other parts of the state or help in constraining the size of the state space e.g. DiceMax

defines the highest value one die can show which influences the amount of possible outcomes

of two dice.

For variables we differentiate between three different types.

1. Player Attributes are responsible for keeping track of properties that refer to a

player’s state. They are all defined as mappings from players to a defined range of

values. As an example, inJail is a mapping from players to the set {TRUE, FALSE}
which indicates, whether each player is in jail at the current moment.

2. Global Attributes track values that are important not only to players but to the

game as a whole. An example is turnPlayer which defines who’s turn it is in the

current state. Another is board, responsible for the attributes of all squares of the

board such as their order, whether a property is mortgaged, or the amount of tax/rent

that is owed when landing on them.

3. Pseudo-Variables could be defined as constants but are defined as variables to make

their values more transparent to readers of the specification. The variable chanceCards

for instance, never changes. Since it is not trivial to a reader, however, that it should be

a sequence of records we set its value in the initial state but never change it afterwards.

3.2.2 Properties
In the specification for Monopoly, we only define safety properties since termination

cannot be guaranteed. For further elaboration on this claim, see Section 5.1.1.3. Since the

amount of variables for Monopoly is rather large, so is the TypeOK invariant which is the

reason we will only look at some of the constraints.

In Figure 3.1 we show the value ranges for each of the player attributes. Player’s positions

are constrained such that they cannot be outside of the board. The amount of money per

player must be a positive number while not being higher than the total amount of money

in the game. The values of inJail and isBankrupt can only be true or false for each player,

and the jailTime of a player cannot exceed 2 since they should latest get out of jail in the

third round after going to jail.

Design 10

Figure 3.1: TypeOK Definition of Player Attributes in Monopoly

We depict the constraints on two global attributes in Figure 3.2. Each turn is modeled

to consist of multiple phases, each of which enables different actions. The possible values are

constrained in the range assertion on phase. Similarly to the player attribute money, also

the bankMoney must not be negative or higher than the total amount of money available.

Figure 3.2: TypeOK Definition of Some Global Attributes in Monopoly

3.2.3 Initial State
The initial state of the game is defined in the Init formula of the specification in Ap-

pendix A. Every player is placed on the first square (= Go), and has a certain amount of

money which is given by the StartingMoney constant. The remaining money stays with the

bank. None of the players are in jail, have not been in jail for any rounds, or are bankrupt.

Action is given to the first player in the pre-roll phase. The order and types of the squares

on the board is initialized as are the Chance and Community Chest cards. For the two card

decks it is vital that they each only contain one Get Out Of Jail Free card and that this is

placed at the last position of the deck. We explain this constraint in Section 3.2.4.5. No

player owns any of the Get Out Of Jail Free cards yet. Since it is not the free-4-all phase

yet, the free4AllOrder is not initialized and there exists no debt that must be payed off yet.

3.2.4 Actions
Because there are many possible actions in Monopoly, we will limit ourselves to show

only those that we think are the most interesting or might need some explanation to be fully

understood. To see all available actions, please refer to the full specification in Appendix A.

Experienced Monopoly players may notice the absence of trading. Since it is not in the scope

of this project to derive a protocol for trading assets between players, this is not provided

as an action in the specification.

3.2.4.1 Mortgaging a Property

For a player to mortgage a property as in Figure 3.3 the pre-conditions are that said

property is owned by the player and that it is not already mortgaged. Additionally, if the

Design 11

property is a street then none of the streets of the same set are allowed to be higher than

level one, which corresponds to them not having any buildings on them. Using the LET

... IN ... structure of TLA+, we define the local variable mortgageValue to be half of

the property’s value using floor division, as indicated by the ÷ symbol. After execution,

the property should be mortgaged and the player gets the mortgage value of the property

from the bank. If the bank does not have the full amount available, the player only gets

the amount of money that remains in the bank. Thus, it is possible that a player mortgages

a property for no monetary gain if the bank has no money left. Since mortgaging prop-

erties is allowed in multiple phases of the game, MortgageProperty is a sub-action of

PreRollMortage, BankruptcyPreventionMortage, and F4AMortage which all set

constraints on the current phase and specify the unchanged variables of the action.

Figure 3.3: TLA+ Definition of MortgageProperty Action

3.2.4.2 Rolling While Not in Jail

In Figure 3.4, we show the specification for when it is a player’s turn to roll the dice

while they are not in jail. The result of the action depends on whether or not they roll the

same number with both dice. If the two dice show different numbers then the player will get

to move the sum of the dice before moving to the next phase, and the count of consecutive

doubles is reset to zero.

When the results of the dice are equal and the player has already rolled doubles twice

before, then they will go straight to jail. If it is not their third consecutive doubles they will

progress normally but the doubles count increases by one.

Design 12

Figure 3.4: TLA+ Definition of RollAndMove Action

3.2.4.3 Rolling While in Jail

Figure 3.5 shows the action of a player rolling when they are in jail. The outcome of this

action again relies on the results of the dice but also on the amount of money they own.

In case the player rolls doubles, they are released from jail for free and continue as normal,

with the exception that they will not get to roll again despite having rolled doubles. Thus,

the doublesCount value is not increased.

When the dice don’t show the same result and the player has missed doubles for the

third round while in jail, they are released from jail while moving the amount of the two

dice. Additionally they will have to pay a pre-defined fine for having missed doubles three

times in a row. Should they not have enough money to do so at the moment, they will enter

the bankruptcy-prevention phase with an open debt to the bank. This debt must be payed

off before they can continue their turn.

Design 13

Figure 3.5: TLA+ Definition of RollInJail Action

3.2.4.4 Paying Rent for Utilities

Paying rent for utilities is another action that depends on dice rolls. This time, their

sum defines the amount that the player landing on the utility owes the owner. Similarly to

Section 3.2.4.3, the player must come up with enough money to pay the rent by mortgaging

or downgrading properties should they not have the required amount. The specification of

the action can be seen in Figure 3.6.

Design 14

Figure 3.6: TLA+ Definition of TryPayUtilRent Action

3.2.4.5 Drawing Chance/Community Chest Cards

As we mentioned in Section 3.2.3, it is crucial that the Get Out of Jail Free cards in each

card deck are placed at the very end. We set this constraint because it simplifies preventing

the card from being drawn while another player already owns it. We do this by excluding

the corresponding index from the range of eligible cards. This can be seen in Figure 3.7.

In our design, we model that the turnPlayer draws any card from the deck. In the board

game version, the player will always draw the top-most card which is placed at the bottom

of the pile after execution or kept by the player if it is a Get Out of Jail Free card. We

make this design choice to imitate drawing a card at random. In the implementation, this

ensures that the order in which cards are drawn remains partial-information even when all

cards are known.

Design 15

Figure 3.7: TLA+ Definition of DrawAndExecuteChanceCard Action

3.3 Auction
In this section we present the design of an auction protocol that we used to implement

auctions in Monopoly. Our specification is general enough that we believe it could also

be used for other decentralized applications. We approach the specification with a top-

down strategy in three steps. In the first version we define the required properties of the

protocol and derive a minimal set of actions that fulfill these conditions. From there on

we introduce additional features until we arrive at a refined design using append-only logs

as a data structure for message publication, which corresponds to our implementation. We

verify that each refinement still follows the required properties.

3.3.1 Properties
We introduce here the correctness properties of the auction protocol. For each, we give

a descriptive definition and additionally provide the formal specification.

3.3.1.1 Termination

In order for an auction to reach termination, all participants of the auction must even-

tually make a decision regarding the outcome of an auction. Moreover, once a participant

makes a decision, they never revert. The formal specification of this property can be seen

in Figure 3.8. The specification is given in two steps. First, terminated verifies whether

all participants have made a decision in the current state. Second, termination asserts

that eventually, terminated will stay true forever, as captured by the eventually (⋄) always
(□) operator. Since the termination property contains assertions on something that must

eventually happen, this is a liveness property.

Figure 3.8: TLA+ Definition of the Termination Property for Auctions

Design 16

3.3.1.2 Agreement

The agreement property is a safety property which specifies that participants may at no

point disagree on the winner of the auction. More formally it asserts that always, for each

pair of participants, if both have picked a winner this must be the same. To see the TLA+

definition, refer to Figure 3.9.

Figure 3.9: TLA+ Definition of the Agreement Property for Auctions

3.3.1.3 Validity

To achieve validity, two conditions must be met. Firstly, the winner of the auction must

have the highest bid of all participants. In Figure 3.10 we call this winWithHigherBid.

Additionally, to be solvable, no participant can bid a negative amount of money or more

than they possess. This is shown in figure Figure 3.10.

Figure 3.10: TLA+ Definition of the Validity Property for Auctions

3.3.1.4 Integrity

While we already specified in Section 3.3.1.1 that participants can never revert from

having chosen a winner, their choice is not binding. By introducing integrity as seen in

Figure 3.11, we assert that in any step, participants may not later select a different winner

if they have already decided on the winner of the auction.

Figure 3.11: TLA+ Definition of the Integrity Property for Auctions

Design 17

3.3.2 Abstract Model (Auction1)
We begin with an abstract model of the auction procedure that implements the minimal

amount of state required to fulfill the properties of the last section. The purpose of this

specification is to serve as a baseline for later refinements in Section 3.3.3 and Section 3.3.4,

which will progressively add more state to reflect our concrete implementation. The full

design can be seen in Appendix B.

3.3.2.1 State Representation

To represent the state of the abstract auction, we define the following constants:

1. UNKNOWN is a model value for signifying that a participant has not yet decided

who (if anyone) has won the auction.

2. NONE is a model value with which they determine that no participant has won

the auction. In contrast to UNKNOWN, this means that the participants made the

decision that no participant has won the auction.

3. Participants defines the set of participants of the auction.

4. MaxAmount ∈ N determines the maximum amount of money a participant can have

at the start of the auction which in turn determines the highest bid they can place.

Additionally we define the following variables:

1. The initialMoney pseudo-variable is a mapping from participants to the range

0..MaxAmount indicating the amount of money each participant has when the auction

starts.

2. lastBid stands for the last bid each participant has made and is thus modeled as a

mapping from participants to the set of natural numbers.

3. The mappingwinner from participants to the set Participants ∪ {UNKNOWN, NONE}
denotes who each participant has decided is a winner, with the possibility of choosing

none of the participants.

3.3.2.2 Actions

For a participant to take the bid action visible in Figure 3.12, the only pre-condition

is that no participant has already determined a winner. They can then choose a new bid

that is higher than their previous bid. Notice that we do not set any restrictions regarding

the bets of the other participants: If we did the specification would force participants to

synchronize prior to updating their bid.

Design 18

Figure 3.12: TLA+ Definition of the Bid Action in Auction1

After some time, a first participant will choose a winner for the auction. We show this

process in the FirstChooseWinner action in Figure 3.13. Again, the only pre-condition

states that no participant has chosen a winner yet. There are two possible outcomes for

choosing a winner: Either the winner is a participant or none. In the first case the winner

must have the single highest lastBid value at the moment. In the second case, there are no

conditions on the status of bids to allow the largest possible range of later implementations.

In any case, after the first participant has chosen the winner, the other participants copy

their winner in the OthersChooseWinner action. This ensures that the agreement property

is always fulfilled. This corresponds to the requirement that once a participant has made a

decision, no participant will later contradict that decision.

Figure 3.13: TLA+ Definition of the ChooseWinner Actions in Auction1

3.3.2.3 Weak Fairness Assumptions

Since TLA+ allows for an infinite amount of stuttering steps, it might occur that the

termination property is violated when some participant does not choose a winner by taking

stuttering steps only. To prevent this from happening, we assert weak fairness on the

actions FirstChooseWinner and OthersChooseWinner, shown in Figure 3.14. This ensures

that these actions must eventually occur if they remain continuously enabled. With this we

guarantee that termination can only be violated by an error in the specification.

Design 19

Figure 3.14: Assumptions on Weak Fairness in Auction1

3.3.3 Round-Based Model (Auction2)
In this refinement of the abstract model we present the first version of the protocol that

might seem applicable in a real-world situation. We do this by introducing the concept of

rounds and by constraining the bids of the participants to depend on previous bids of the

other participants. Additionally, participants may pass to indicate that they withdraw from

the auction. Using these additions, we then set deterministic boundaries for choosing the

winner of the auction. The whole specification can be seen in Appendix C.

3.3.3.1 Withdrawing from an Auction

When a participant no longer wants to increase their bid either because they don’t have

the required funds to do so or for strategic reasons, they have the opportunity to pass. With

this, they mark their permanent withdrawal from the auction. The consequences are that

they will no longer be allowed to place any new bids. All pre and post-conditions can be

seen in Figure 3.15.

Figure 3.15: TLA+ Definition of the Pass Action in Auction2

3.3.3.2 Concept of a Round

We define a round of an auction as a synchronization frame in which each active (i.e.

not passed) participant must take exactly one action. A participant may move on to the

next round if and only if:

1. they themselves have not passed and

2. all active participants (including themselves) have taken action in the current round.

This prevents participants from placing multiple consecutive bids without other partici-

Design 20

pants being able to react to them.

We keep track of each player’s round by adding the round variable to the model. At the

beginning, this is initialized to 1 for all participants and will increment when they decide to

move to the next round.

3.3.3.3 Constraints on Bidding

In Section 3.3.2.1, we introduced the lastBid variable as the last bid each participant has

placed. In the round-based we redefine the meaning of this variable to be the bid that each

participant has placed in the previous round. With this change comes the need for a new

variable bid to keep track of the bids for each participant in the current round. Participants

are only allowed to place one bid per round. Unlike in Section 3.3.2.2 we assert that bids of

the current round may not be lower than any bids of the previous round.

However, we don’t want to force the leading bidder to increase their bid in a new round.

For this, we add the ability to stand. This is very similar to bidding except that a participant

is allowed to bid the same amount as in the previous round if all other bids were lower.

Standing is not forced so the leading bidder may increase their bid even further.

To prevent a participant from placing new bids when they are the only remaining ac-

tive participant of the auction, we further add the pre-condition that at least one other

participant must be in the same round.

3.3.3.4 Determining a Winner

In Section 3.3.2.2 the determination of a winner is somewhat arbitrary, with some partic-

ipant determining a winner and the others just blindly copying the first. This changes in the

round-based model. All participants individually determine the winner based on the current

state of the auction. If all players have decided to pass, then noone wins the auction. On the

other hand, a participant wins the auction if they are the only remaining active participant.

In order to win, they must have the highest bid of all.

With the individual choice of winners, it is no longer obvious that agreement still holds

in this model. We explain how we verified that the property does hold in Section 5.1.1.2.

3.3.4 Append-Only Log Refinement (Auction3)
In the last refinement of the auction protocol we introduce the append-only log data

structure to keep track of participants’ actions during the auction. We simulate a decen-

tralized environment by presenting frontiers as a way to reflect which messages of other

participants each participant currently replicates. To achieve progress, participants must

propagate their states to their competitors. Using append-only logs prepares us for the

implementation of the protocol using Git in Chapter 4.

3.3.4.1 Mapping of Actions from Round-Based Model

This version of the auction procedure still maintains the concept of rounds and the

restrictions they bring. However, we step away from the notion that all participants imme-

diately know what actions their competitors have taken. For this, we introduce two new

variables:

Design 21

1. The msgs variable is a mapping from participants to the sequence of all messages the

participant has published. These messages can either be natural numbers indicating

their bids, PASS to signify their withdrawal, or CHANGE to show that they have

moved on to the next round.

2. frontiers is a mapping from participants to another mapping from participants to

the set of natural numbers. It indicates the latest message replicated from other

participants. To give an example, msgs[p2][frontiers[p][p2]] refers to the last message

by p2 that p has replicated, where p, p2 ∈ Participants.

Each time a participant takes an action, they append a new message to their log and

increment the frontier value for themselves.

3.3.4.2 Further Bidding Restrictions

In Section 3.3.3.3 we constrained the bids of a participant such they must be higher than

the last bid of all other participants. We restrict this even further in the log-based protocol

by forcing bids of a participant to be higher than all bids of the other participants they have

replicated, including bids of the current round. The definition of the last bid by p2 that p

has replicated can be seen in Figure 3.16. Similarly, participants are no longer allowed to

stand if they had the highest bid in the last round, but already know that they have been

outbid in the current round by some other participant.

This additional constraint is not enforcable in peer-to-peer systems because a participant

may always pretend to not have replicated the other messages. However, purposefully

placing a lower bid than the leading one will never lead to an advantage, because the only

way to win is by having the exclusive highest bid. Thus, participants have no incentive to

deliberately do so.

Figure 3.16: TLA+ Definition of the knownLastbid Operator in Auction3

3.3.4.3 Merging Frontiers

For the auction to progress, participants must eventually learn of the actions that the

other participants have taken. We do this by adding the Merge action, visible in Figure 3.17,

to the specification. In this action we simulate sender propagating their replicated messages

to receiver by updating the values of the receivers frontier to be the maximum of their

current values and the values received by sender.

Design 22

Figure 3.17: TLA+ Definition of the Merge Action in Auction3

With this final refinement, the design of the auction protocol and Monopoly as a whole

is complete. In the next chapter, we demonstrate how we turn the specifications into a real

application.

4
Implementation

This chapter outlines the implementation of the TLA+ specifications into a real application.

We focus on four main aspects: showing how the game state is represented in YAML format

such that it remains close to the structure of the TLA+ models, describing how actions are

executed, multiplayer synchronization with Git, and explaining how the game is initialized,

hereby differentiating between human-playable and simulation versions. The source code

can be found at https://github.com/lgloor/monopoly.

4.1 State Representation
We store the whole game state in a YAML file, closely mapping the structure from the

TLA+ specifications. The only difference lies in the player attributes. Instead of top-level

mappings each player contains its own set of attributes. In Figure 4.1 we show the structure

of the whole state file. Players (here arbitrarily chosen p1, p2, and p3) are identified by

unique strings.

In order to read and manipulate the game state in Python, we use the PyYAML library

which can convert YAML to Python data types and vice versa. In our case, the YAML

file is mapped to a nested Python dictionary, where the top-level keys correspond to major

game variables.

To access different parts of the state, we use Python’s dictionary operations. For example,

to access the bankruptcy status of p1 we use state[’players’][’p1’][’bankrupt’].

Ordered collections of objects, like the spaces of the board, are mapped to lists, which are

accessed using zero-based indexing. Thus, to retrieve details of the third square on the

board, we use state[’board’][2].

4.2 Action Execution
The execution of an action is divided into five steps:

1. First, we load the current game state from the YAML file to Python format.

2. Next, we gather all enabled actions by checking their pre-conditions.

3. Third, we select an action to be executed.

4. Then, we apply the effects of the selected action to the Python state.

https://github.com/lgloor/monopoly

Implementation 24

Figure 4.1: Structure of the Game State in YAML

5. Finally, we write the changed state back to the YAML file.

To collect all enabled actions, we initialize an empty list. For each possible action, we

check whether the pre-conditions are met. In case they are, we add a tuple containing a

short description of the action and the lambda function responsible for applying the state

changes of the corresponding action to the list.

Should there be multiple actions whose pre-conditions are satisfied, we ask the user to

Implementation 25

choose one of them. In simulation runs, one is chosen uniformly at random. If only one

single action is enabled, it is picked automatically.

To execute the selected action we call its lambda function and print the short description

to notify the user of which action has been executed. The lambda function returns a more

detailed version of the effects that the action has which is used as the message for the Git

commit which is created after each action has been executed. This allows all participants

to follow the events of the game using Git’s log function.

4.3 Action Broadcasting and Synchronization
As described in Section 4.2 we create a separate Git commit for each action that was

executed. To enable all participants to observe the progression of the game state, every

player must have access to the repositories of the other players. We accomplish this by adding

the URL to each participant’s repository as a Git remote, named after the corresponding

player. This process is further explained in Section 4.4.

To synchronize changes from other repositories, we use a fetch-only model, placing the

responsibility of retrieving updates on each individual player. The only exception to this

rule is the origin remote, which the participants use to share their local replica with the

others. In this case, it is required that local changes are pushed to the origin remote to

ensure that the other players can access the latest updates.

When new updates are received, we add them to the local repository using git merge.

In our implementation, we ensure that no merge conflicts can occur. This is because con-

currency is only present in auctions, where participants can concurrently bid, stand or pass.

However, each participant can only take one action per round, only affecting parts of the

state file that are not changed by any other participants. All other actions are executed

sequentially and can thereby inherently not lead to any issues.

4.3.1 Asynchronous Push
While the obligation of using a hosted repository to prevent access to one’s local machine

might be useful to users, it comes at the expense of having to push all actions to the origin

remote. This operation can be time consuming if done in a synchronous manner. This is

especially apparent when a player is able to execute multiple actions consecutively.

To circumvent this issue, we outsource the push operation to a separate thread. This

allows sharing the current state of the game with peers while still maintaining minimal

overhead in case of consecutive action execution.

The only time we force a synchronous push is upon game termination to prevent the

program from exiting before the last relevant changes are accessible to the other players.

This guarantees that all participants will eventually be able to conclude that the game has

ended, allowing them to exit as well.

4.4 Game Initialization
When initializing a new game, we differentiate between instances playable for real people

and ones that are used for simulations. We will later use simulations in Section 5.2 to evaluate

the performance of the implementation.

Implementation 26

4.4.1 Human-Playable
4.4.1.1 Creating a New Game

For a player to create a new instance of monopoly, we assume that the following condi-

tions are met:

1. All players have created a new, empty Git repository on a hosting platform like Github.

2. All participants are authorized to fetch from the other players’ repositories.

3. The initiator of the game knows the requested nicknames and repository URLs for

each player, including themselves.

4. The nicknames are all unique, are not equal to the string origin, and comply with all

other requirements for naming a Git remote.

When these requirements are met, we prompt the initiator to first enter the URL of their

remote repository as well as their nickname, and afterwards the same information for each

other participant. In the current directory of the user, we clone the remote repository to

./monopoly <name> where <name> is replaced by the chosen nickname of the initiator.

Additionally, we save the nickname in .git/.name of the newly created repository such

that in can be retrieved in case the program should disgracefully terminate. This allows the

user to rejoin the game without having to enter their nickname again. Since we persist the

nickname in the .git folder, we automatically prevent that the corresponding .name file

is tracked by git.

All other players are added as Git remotes using the provided nicknames and URLS.

This enables us to retrieve updates from them during the course of the game.

Finally, we create and commit the initial state in the repository of the initiator. The

play order will always be the same as the order in which the initiator has provided the player

information, meaning that the initiator will always have the first turn.

4.4.1.2 Joining a New Game

After a new game instance has been created, the other players are able to join. While

not as many as for creating a new one, some conditions are still required to join a game:

1. The joining player has access to the URL of their own, as well as the initiator’s

repository.

2. Their own repository URL does not differ from the one that the initiator knows of.

3. The joining player will choose the nickname which the iniator has assigned for them.

We prompt the user to enter the URL of their own repository and their nickname, as

well as the URL of the initiator’s repository. Equivalent to Section 4.4.1.1, we clone the the

repository and persist the player’s nickname.

To retrieve the game state from the initiator, we first create a temporary initiator remote

with the initiator’s repository URL from which we pull the main branch. After successfully

receiving the game state, the initiator remote is removed. Finally, we add the remotes to

the other players based on the nicknames and corresponding URLs from the state file.

Implementation 27

4.4.1.3 Rejoining an Active Game

Should the program unexpectedly exit before the game is terminated, players have the

option to rejoin games that are already in progress. In order to do so, they only need to

provide the path, under which the repository for this game is saved. Since their previously

chosen nickname is already persisted when creating or first joining the game, they can

directly continue from where they left off.

4.4.2 Simulation
To run simulations, we create instances of the game with three participants. The cor-

responding repositories are isolated in directories named monopoly <gameID> with sub-

directories like m<gameID> p<playerID>. For example, the repository of player 0 in

simulation 2 is stored under ./monopoly 2/m2 p0.

Using this structure, we add the other partcipants’ repositories as remotes by using

relative paths. For example, m2 p0 can refer to m2 p1’s repository by adding ../m2 p1

as a remote. This allows us to fully use Git’s fetch operation without requiring separate

Github repositories for each simulation participant.

5
Evaluation

In this chapter we evaluate the design from Chapter 3 and the implementation introduced in

Chapter 4 on their correctness. The primary goal is to show that there exists no reachable

state which violates some pre-defined properties.

Additionally we look at the performance of the implementation to evaluate the playability

of the game for end-users. For this, we measure the time elapsed from the point of choosing

an action to the time of it having been commited to the local Git repository as well as the

amount of time saved by using asynchronous pushing to remote repositories.

To analyze the length of a game we count the number of Git commits in simulation

repositories. Furthermore we examine the storage consumption of repositories.

We present and discuss all results in their corresponding sections.

5.1 Correctness
This section focuses on the evaluation of correctness of the application design and its

corresponding implementation. We define a collection of safety and liveness properties and

show that no sequence of actions, neither in the design nor the implementation, can lead to

violations of these properties. To achieve this, we apply model-checking using TLC on the

design and run simulations on the implementation while checking for violations.

5.1.1 Verifying the Design
5.1.1.1 Model-Checking with TLC

To evaluate the correctness of the application design we use TLC, the model checker for

TLA+ that ships directly with the TLA+ Toolbox. For smaller specifications it allows us to

expand all possible state sequences while checking both safety and liveness properties using

a breadth-first-search approach. For specifications with a large amount of possible states,

this thorough checking can take a long time. TLC offers the simulation mode for such cases

where it generates random traces up to a specified maximum length. In this mode it will

not check liveness properties.

All following results are obtained using version 1.7.4 of the TLA+ Toolbox which is

running on a machine with a Ryzen 5 1600 processor with 6 cores clocked at 3.2 GHz and

16 GB of RAM with Linux Mint as its operating system while allocating 8 worker threads

and 10.3 GB of RAM to the TLA+ Toolbox.

Evaluation 29

5.1.1.2 Auction

In Section 3.3.1, we previously defined the four liveness and safety properties of termi-

nation, agreement, validity, and integrity required for an auction protocol to be correct. To

verify that these properties hold at all abstraction levels of the auction design we first need

to prove that they hold at the most abstract level of Auction1 and then use an incremental

approach to show that Auction2 implies Auction1 and lastly to check that Auction3

implies Auction2.

The only customizable constants (i.e. not pure model values) are the Participants, and

MaxAmount values. We define Participants as a symmetry set of model values {p1, p2, p3}
and MaxAmount =∆ 4 because this enables all bidding possibilities, i.e. one participant could

bet everything in the beginning or all participants incrementally outbid each other, while

still enforcing that the amount of possible states cannot grow too large.

To ensure that TLC verifies the properties, we add termination, agreement, validity, and

integrity to the Properties section under What to check? in the TLA+ Toolbox. As

visible in Table 5.1, TLC explores the entire state space of Auction1 after one second.

During this, it finds no state or sequence of steps that violate any of the defined properties.

The amount of times each action is enabled is displayed in Table 5.2.

Time Diameter States Found Distinct States Queue Size
00:00:01 7 18,585 7,982 0
00:00:00 0 125 35 35

Table 5.1: State Space Progress of TLC in Auction1

Action States Found Distinct States
A1Init 125 125
A1Bid 2,720 645
A1FirstChooseWinner 3,408 3,083
A1OthersChooseWinner 12,332 4,219

Table 5.2: Actions Taken in Auction1

The next step is to show that Auction2 implements Auction1. For this, we add

Auction1 as a local instance in Auction2 and run TLC while checking A1FairSpec as

a property. It takes TLC two seconds to explore all possible sequences of steps. Again, it

finds no errors meaning that all desired properties hold in Auction2 as well. The details

of the TLC run can be seen in Table 5.3 and Table 5.4

Time Diameter States Found Distinct States Queue Size
00:00:02 31 74,647 23,289 0
00:00:00 0 125 35 35

Table 5.3: State Space Progress of TLC in Auction2

In the final step, we validate that Auction3 implies Auction2. Similarly to before, we

run TLC on Auction3 while checking the property A2FairSpec. This time TLC takes

about two minutes but is still able to explore all possible traces. Also here, TLC cannot find

behaviors that violate any of the properties. The detailed results are displayed in Table 5.5

and Table 5.6.

We have now shown that termination, agreement, validity, and integrity hold on all levels

Evaluation 30

Action States Found Distinct States
A2Init 125 125
A2Stand 4,173 644
A2Bid 19,270 2,194
A2NextRound 8,054 4,239
A2Pass 26,723 6,521
A2ChooseWinner 16,752 9,656

Table 5.4: Actions Taken in Auction2

Time Diameter States Found Distinct States Queue Size
00:01:58 57 8,496,284 836,326 0
00:01:23 27 7,093,650 726,526 30,258
00:00:04 7 224,838 33,901 16,099
00:00:01 0 125 35 35

Table 5.5: State Space Progress of TLC in Auction3

Action States Found Distinct States
A3Init 125 125
A3Stand 57,796 21,638
A3Bid 157,317 32,136
A3NextRound 144,132 116,081
A3Pass 356,891 120,039
A3ChooseWinner 253,089 179,109
A3Merge 7,526,934 367,295

Table 5.6: Actions Taken in Auction3

of abstraction in the auction protocol design. Since Auction3 is based on append-only-logs,

we can implement this specification using Git or any other similar version control system.

The design, however, sets no limitations about security constraints meaning that it assumes

all participants only append to their local logs, which is something that may have to be

regarded in a real-world application.

5.1.1.3 Monopoly

Monopoly has a very large state space due to its inherent randomness. On each dice

roll, all distinct sums of the two dice lead to different outcomes in the next state and each

card drawn from a community chest or chance deck has different effects. To decrease the

state-space, we make the following changes for the monopoly specification:

1. We decrease the total amount of money in the game to 150$. Because of this, we also

reduce the following quantities:

a) Reward for passing Go to 4$

b) Amount of money per player at the start of the game to 30$

c) Fine for getting out of jail to 8$

2. For each type of property (i.e. street, railroad, utility) we only add one set consisting

of two properties. This allows us to test all the logic while minimizing the amount of

squares on the board.

Evaluation 31

3. With the same reasoning, we add only one of each type of Community-Chest/Chance

card to the corresponding deck.

4. We limit the number of Tax, Community-Chest and Chance squares to one per type.

5. Because the number of squares is now much lower, we limit each die to show a maxi-

mum value of 2.

6. A player can only win an auction with a bid of 1$, 5$, or 10$ instead of any amount

in his money range.

Since for Go, Free Parking, and Go To Jail there exist only one square on the original board

we cannot reduce these any further without having some untested logic.

Even with the previous simplifications, during a full model checking run with three

players, TLC finds 2.153 · 109 distinct states after 13 hours while still increasing the amount

of distinct states found by more than 1.8 ·106 each minute. Due to time reasons, we decided

to abort further checking. The last few minutes of this run can be seen in Table 5.7.

Time Diameter States Found Distinct States Queue Size
13:20:32 44 4,211,134,936 2,153,375,757 650,237,606
13:19:32 44 4,207,404,019 2,151,457,320 649,673,252
13:18:32 44 4,203,812,203 2,149,568,139 649,121,609
13:17:32 44 4,200,207,697 2,147,652,229 648,524,957
13:16:32 44 4,196,566,507 2,145,635,399 647,843,795
13:15:32 44 4,192,759,996 2,143,628,465 647,219,782
13:14:32 44 4,189,088,642 2,141,615,842 646,544,839

Table 5.7: Last 7 Minutes of State Space Progress of TLC in Monopoly

In this exhaustive search, we additionally checked using liveness that all possible be-

haviours eventually terminate (i.e. only one non-bankrupt player remains). However, TLC

provides a sequence of states which contains a cycle.2 This cycle relies on a specific sequence

of dice rolls and player actions such as mortgaging and unmortgaging properties. Hence,

this cycle alone does not prove that there exist instances of our monopoly model that will

not terminate since the cycle can always be escaped by one different dice roll which is bound

to happen due to the inherent randomness of the dice. Nonetheless, we stopped checking

for termination after the counterexample has been found.

After removing the only liveness property of the specification it is now possible to check

the specification using the simulation mode of TLC. In this mode, TLC does not check

liveness properties or the amount of distinct states visited, but still checks invariants and

keeps track of the total amount of states seen and the sub-actions that were taken. This is

not as strong a proof as the full model checking but TLC is not able to find any invariant

violations after two more hours of exploring random traces of length up to 250 while each

possible action has been taken at least 339 times. The detailed amounts of sub-actions can

be seen in Table 5.8

Because there were no violations found by TLC, we can quite confidently say that the

specification is correct. While it is unfortunate that we are not able to check the whole state

space even after reducing it to our best abilities, it may be possible that we missed ways to

2 https://github.com/lgloor/bachelor-thesis-tla-specs/blob/main/counterexamples/cycle proof

https://github.com/lgloor/bachelor-thesis-tla-specs/blob/main/counterexamples/cycle_proof

Evaluation 32

Action States Found
EndPreRoll 16,165,633
PlayGoofjCh 25,675
PlayGoofjCc 26,718
PayJailFine 3,125,725
PreRollUnmortgage 7,245,206
PreRollMortgage 5,918,443
PreRollUpgrade 104,101
PreRollDowngrade 84,351
RollAndMove 19,307,352
RollInJail 1,590,074
BuyProperty 861,375
PayStreetRent 168,739
PreventBankruptcyOnStreetRent 339
PayRailRent 25,807
PreventBankruptcyOnRailRent 20,587
TryPayUtilRent 2,196,430
PayTax 357,742
PreventBankruptcyOnTax 496,527
AuctionProperty 18,454,269
LandOnGoToJail 4,097,300
DrawAndExecuteChanceCard 12,003,911
DrawAndExecuteCommunityChestCard 13,616,858
DoNothingOnOwnProperty 1,327,840
DoNothingOnJailSquare 418,158
DoNothingOnGo 1,475,965
DoNothingOnFreeParking 1,592,992
DoNothingOnMortgagedProperty 1,036,925
DoublesCheck 25,185,080
PayOffDebt 183,767
BankruptcyPreventionMortgage 610,636
BankruptcyPreventionDowngrade 10,728
GoBankrupt 907,423
ConcludeFree4AllActions 22,409,000
F4AUnmortgage 8,607,142
F4AMortgage 7,798,143
F4AUpgrade 133,479
F4ADowngrade 107,809
EndTurn 8,717,697
Init 1

Table 5.8: Actions Taken in Simulation Runs of Monopoly after 2 Hours

further limit the possible actions such that a full check would become feasible and confirm

or refute our expectation.

Model checking with TLC helped us to find errors in our specification. For instance,

when initializing the free-4-all phase, we did not discard the players that have already went

bankrupt meaning that bankrupt players were still technically able to take some actions.

TLC recognized this as a violation of the invariant InvNoActionsPossibleIfBankrupt,

allowing us to quickly resolve the error.

5.1.2 Verifying the Implementation
The implementation using Python and Git for the actions and YAML for the state

representation closely follows the TLA+ specification to ensure correctness. While the

Evaluation 33

structure of the state differs slightly from the specification (for example, bankruptcy is

now represented as a player attribute rather than a top-level mapping), all actions are

implemented such that they can only be taken if their enabling conditions are valid and

that have the same effects as defined in the TLA+ specification. These differences are

purely for improving the readability of the state and do not lead to any semantic changes.

To verify the correctness of the implementation, we again applied simulation testing using

three players. For each player, we create a separate Git repository on the same machine

to speed up fetch operations. Before each commit, the Python translations of the TLA+

invariants are checked, raising Exceptions in case they are violated. We use Python’s Rand

class, seeded with the hash of the initial commit of a game to create the random traces. This

technique also enables us to exactly replay all actions leading up to an invariant violation.

Using this technique, we simulate 200 games until termination. While TLC proved that

this is not guaranteed, it requires very specific chains of actions and is thus highly unlikely

when executing actions, drawing cards, and throwing dice pseudo-randomly. All simulations

do in fact terminate and in no pass could any violation be found.

Since the implementation is strongly following the design and simulations did not find

any errors, we are confident that the implementation is also correct. The focus of this thesis

lies more on showing correctness on the design rather than the implementation. We thus

present no further results regarding the correctness of the implementation. Measurements

regarding action execution and game length can be found in Section 5.2.

5.2 Performance
While correctness is the main focus of this thesis, it is still important that the imple-

mentation performs well enough for players to enjoy using the program. In this section, we

take measurements regarding time and storage usage to evaluate the implementation on its

performance.

5.2.1 Local Action Execution
To compute the time taken for executing an action and subsequently committing the

changes to the local repository, we measure the time before and after said steps and write

the difference to a file. It is most efficient to do this in the simulation environment since this

way we are not reliant on a user picking an enabled action manually. The resulting boxplot

of the analysis over 6500 action executions can be seen in Fig. 5.1.

The results show that more than 75% of actions can be executed and their results com-

mitted within 0.019 seconds. Even for the greatest outlier, this takes only 0.034 seconds.

This is good news, because it means that any noticable latency will not stem from the im-

plementation’s action execution nor from Git’s commit protocol. We did not analyze, from

which action each execution time comes from so there might be a correlation between action

and execution times that could explain the outliers that we are not aware of.

5.2.2 Network Considerations
Measuring the propagation delay between one player’s push operation and another

player’s reception of the update presents significant challenges. This latency mostly de-

Evaluation 34

Figure 5.1: Local Action Execution and Commit Times

pends on external factors beyond our control, such as:

• Git push and fetch operations

• Network infrastructure and bandwidth limitations

• Remote repository hosting service performance

It is not in the scope of this project to analyze and/or optimize these uncertainties.

Hence, we provide no further elaboration for this part.

5.2.3 Number of Commits per Game
To evaluate the estimated duration per game, we count the number of commits in Git

repositories. For this, we use the command git rev-list --count <branch>. This

gives us an overview on the number of actions taken until a game completes. The analysis

over 50 games can be seen in Figure 5.2.

The results suggest that an average game has around 3000 actions that are taken. How-

ever, we assume that the number of actions taken is much lower when the game is played

with real players instead of running simulations. In simulation runs we observed that in the

pre-roll and free-4-all phases, players frequently mortgage and unmortgage or upgrade and

then downgrade their properties multiple times consecutively. This is unrealistic in a real

game since players do not gain any advantage by doing so. For more accurate simulation

results, it may make sense to only allow for mortgaging and downgrading properties in the

bankruptcy-prevention phase.

5.2.4 Disk Usage
To estimate the spacial cost of a monopoly instance we measure the size of git repos-

itories when the game has terminated. This can be done using the command du -sk

<path of directory> which yields the size of a directory in kilobytes. Similarly as in

Section 5.2.3, we look at the same 50 simulations and display the results in Fig. 5.3.

Evaluation 35

Figure 5.2: Number of Commits per Monopoly Repository

Figure 5.3: Size of Monopoly Git Repositories

Together with the results from Section 5.2.3, we additionally look at the increase in disk

usage that each commit causes. We obtain this value as follows:

∆size =
Repository size

Number of Commits in Repository

We show the results acquired results in Figure 5.4.

Figure 5.3 shows that while most of the games remain under the size of 20 megabytes

it can occur that they take up more than 40 megabytes. However, considering that most

machines today have hundreds of gigabytes of storage this is still a rather small footprint.

Seeing that the state.yml file in each repository is approximately 5.7 KB large it makes

sense that each commit increases the amount of space used by almost the same amount.

This is because when a file changes in a commit, Git stores the complete new file in its

object database. From a disk usage perspective, this is definitely not optimal and could be

improved by splitting the game state over multiple files, each with their own responsibility.

Evaluation 36

Figure 5.4: Size Increase per Commit in Kilobytes

Since each action only changes a small portion of the state, this would lead to a great size

decrease.

6
Related Work

In this chapter, we look at publications by other people which are related to our own project.

We discuss what similarities and differences they show in terms of what they achieve and

how they are implemented.

6.1 Monopoly Implementations
On Github, we found multiple implementations of Monopoly. Here we want to specif-

ically highlight the versions of Levalleux [11], Tomya [14], and Xu [16], all of which chose

a decentralized approach like we did. In contrast to our implementation, however, they all

use blockchain technology and smart contracts to propagate game states instead of Git.

6.2 Append-Only Log Applications
Append-only log technology is not only applicable for implementing games. It can also

be used in other applications. A-Run [3] has created a chat application called Collab-App in

Javascript. To find and connect to peers, the program uses a library called discovery-swarm

making use of TCP sockets.

Another example is Tremola [2], a fully decentralized chat application using the tinySSB

protocol [15] which is built on append-only logs. In contrast to our implementation, however,

SSB uses authenticated append-only logs to prevent participants from impersonating one

another [7] which is something we do not enforce.

Also, while unnecessary in the context of a game because the players have an incentive

to not fork the game state in order to finish it, append-only logs can be extended to become

equivocation-tolerant to prevent partitioning of replicas, which Lavoie [10] proposed with

2p-bft-log. Furthermore, append-only logs may be extended to eventually exclude Byzantine

participants, e.g. with a Blocklace as presented by Almeida and Shapiro [4].

6.3 Formal Specifications of Games
To the best of our knowledge, there do not exist any previous specifications of Monopoly.

Nonetheless, other games have been formally specified using TLA+ or other specification

languages like PDDL (Planning Domain Definition Language).

Related Work 38

Ramisetti [13] formalizes a role-playing game where a hero tries to escape from a dungeon

containing monsters and other traps in PDDL. The goal is to find a solution for various initial

configurations whereas we focus on showing correctness.

Additionally, we found a specification of the classic video game Pong using TLA+ [6].

It describes the movement of the paddles as well as the ball and keeps track of the player’s

score terminating when a player reaches a certain amount of points.

Similarly to our project, Matter [12] presents both a TLA+ specification as well as

an implementation of the board game Catan. The game is also implemented with Git.

In contrast to Monopoly, Catan does not use auctions. Moreover, Matter’s implementation

does not provide a way to interactively play Catan. However, users can run local simulations

with a graphical user interface displaying the progress of the game’s state.

6.4 Relationship of Auction Protocols to Consensus
Our auction protocol is closely related to the Regular Consensus abstraction described

by Cachin et al. [5], because it shares the same properties except that validity requires solv-

ability of participants. The valid combinations of winning bet and winner upon termination,

i.e. Amount× (Participant ∪ {NONE}), can be seen as the set of proposed values and the

auction algorithm guarantees only one of those is selected.

6.5 Other Applications of TLA+
While TLA+ can be used to formally specify games, it is more often used to formalize and

prove protocols or other algorithms. We found a Github repository providing many examples

using TLA+, several of which are written by Leslie Lamport himself [9]. Examples include

a resource allocation algorithm or a consensus protocol called Cesar.

7
Conclusion

In this thesis we addressed the broader challlenge of designing correct distributed systems

by presenting a way to formally specify, verify, and implement a decentralized version of

the board game Monopoly. For this, we developed a TLA+ specification of Monopoly,

capturing its core mechanics including player turns, randomized events, asset ownership,

and auctions. For auctions specifically, we introduced a protocol which was refined across

three abstraction levels. In each, we proved that the correctness properties of termination,

agreement, validity, and integrity are maintained by using the model checker TLC.

In the implementation we translated these formal specifications into a working applica-

tion. The game state was represented in YAML and we used Git for synchronizing actions

between distributed players. This choice allowed us to create both a human-playable and a

simulated version of the game used for verifying correctness of our implementation.

7.1 Future Work
Despite the successes, there remain opportunities for future work. First, the current

implementation assumes honest participants and does not prevent any security threats.

Later extensions could implement self-certifying Git commits [10] using public-private key

pair encryption to prevent a malicious participant from impersonating others.

A mechanic missing from our implementation is trading of assets between participants.

To resolve this, a trading protocol could be established using TLA+ to prove correctness

properties, one example being the prevention of double spending when the same asset is

involved in multiple trade offers.

Finally, the existing implementation runs entirely through command-line interactions

and YAML state files. While functional, this can be unintuitive for end users. Extending

the program with a graphical user interface would improve usability by making the game

state and immediate effects of actions more apparent to users.

7.2 Impact of this Thesis
The impact of this thesis lies in demonstrating that proving correctness of concurrent

systems can be made accessible using formal methods. Applications of this approach can

range from entertainment contexts such as games to financial environments where correct

Conclusion 40

auction protocols are very important. With decentralized programs becoming more and

more prevalent, methods like the one presented here offer a valuable framework for building

verifiable systems.

Bibliography

[1] Git, 2008. URL https://git-scm.com/. Accessed: 2025-06-17.

[2] cn-uofbasel/tremola, May 2025. URL https://github.com/cn-uofbasel/tremola. Ac-

cessed: 2025-06-17.

[3] A-Run. runionow/Collab-App, May 2019. URL https://github.com/runionow/

Collab-App. Accessed: 2025-06-17.

[4] Paulo Sérgio Almeida and Ehud Shapiro. The Blocklace: A Byzantine-repelling and

Universal Conflict-free Replicated Data Type, January 2025. URL http://arxiv.org/

abs/2402.08068. Accessed: 2025-06-17.

[5] Christian Cachin, Rachid Guerraoui, and Lúıs Rodrigues. Introduction to Reliable

and Secure Distributed Programming. Springer Berlin Heidelberg, Berlin, Heidelberg,

2011. ISBN 978-3-642-15259-7 978-3-642-15260-3. URL http://link.springer.com/10.

1007/978-3-642-15260-3. Accessed: 2025-06-17.

[6] René Dudfield. illume/pong-tlaplus: TLA+ model for checking a pong game, October

2023. URL https://github.com/illume/pong-tlaplus. Accessed: 2025-06-17.

[7] Anne-Marie Kermarrec, Erick Lavoie, and Christian Tschudin. Gossiping with Append-

Only Logs in Secure-Scuttlebutt. In Proceedings of the 1st International Workshop on

Distributed Infrastructure for Common Good, DICG’20, pages 19–24, New York, NY,

USA, January 2021. Association for Computing Machinery. ISBN 978-1-4503-8197-0.

doi: 10.1145/3428662.3428794. URL https://dl.acm.org/doi/10.1145/3428662.3428794.

Accessed: 2025-06-17.

[8] Leslie Lamport. Specifying systems: the TLA+ language and tools for hardware and

software engineers. Addison-Wesley, Boston, Mass., 2003. ISBN 978-0-321-14306-8.

Accessed: 2025-06-17.

[9] Leslie Lamport, Markus A. Kuppe, Stephan Merz, Andrew Helwer, William Schultz,

Jeff Hemphill, Mariusz Ryndzionek, Igor Konnov, Thanh Hai Tran, Josef Widder, Jim

Gray, Murat Demirbas, Guanzhou Hu, Giuliano Losa, Ron Pressler, Younes Akhouayri,

Luming Dong, Zhi Niu, Lim Ngian Xin Terry, Gaurav Gandhi, Isaac DeFrain, Martin

Harrison, Santhosh Raju, Cherry G. Mathew, Fransisca Andriani, and Ludovic Yvoz.

TLA+ Examples, June 2025. URL https://github.com/tlaplus/Examples. Accessed:

2025-06-17.

[10] Erick Lavoie. 2P-BFT-Log: 2-Phase Single-Author Append-Only Log for Adversarial

Environments, July 2023. URL http://arxiv.org/abs/2307.08381. Accessed: 2025-06-

17.

https://git-scm.com/
https://github.com/cn-uofbasel/tremola
https://github.com/runionow/Collab-App
https://github.com/runionow/Collab-App
http://arxiv.org/abs/2402.08068
http://arxiv.org/abs/2402.08068
http://link.springer.com/10.1007/978-3-642-15260-3
http://link.springer.com/10.1007/978-3-642-15260-3
https://github.com/illume/pong-tlaplus
https://dl.acm.org/doi/10.1145/3428662.3428794
https://github.com/tlaplus/Examples
http://arxiv.org/abs/2307.08381

Bibliography 42

[11] Ludovic Levalleux. levalleux-ludo/DeFi-Venture, June 2022. URL https://github.com/

levalleux-ludo/DeFi-Venture. Accessed: 2025-06-17.

[12] Tim Matter. Modelling and Implementing the ”Catan” Boardgame as a Replicated

State Machine for Peer-to-Peer Systems. Master’s thesis, Universität Basel, Basel, May

2025.

[13] Nikhila Ramisetti. NikhilaRamisetti/Dungeon game-Role playing games, October

2023. URL https://github.com/NikhilaRamisetti/Dungeon Game-Role playing games.

Accessed: 2025-06-17.

[14] Somar Tomya. somya-15/de-monopoly, April 2023. URL https://github.com/

somya-15/de-monopoly. Accessed: 2025-06-17.

[15] Christian Tschudin. ssbc/tinySSB, June 2025. URL https://github.com/ssbc/tinySSB.

Accessed: 2025-06-17.

[16] Michael Xu. SirNeural/monopoly, October 2024. URL https://github.com/SirNeural/

monopoly. Accessed: 2025-06-17.

https://github.com/levalleux-ludo/DeFi-Venture
https://github.com/levalleux-ludo/DeFi-Venture
https://github.com/NikhilaRamisetti/Dungeon_Game-Role_playing_games
https://github.com/somya-15/de-monopoly
https://github.com/somya-15/de-monopoly
https://github.com/ssbc/tinySSB
https://github.com/SirNeural/monopoly
https://github.com/SirNeural/monopoly

A
Monopoly TLA+ Specification

Starts on next page.

module Monopoly
extends Integers, Sequences, FiniteSets

constants NULL, Model value because TLA+ does not have built in support for null

NumPlayers, Number of players participating

StartingMoney , Amount of money that each player starts with

TotalMoney , Total money available

DiceMax , Highest number one die can show

JailFine, Fine for getting out of jail

BaseRailRent , Rent when owning 1 railroad

PassGoReward Reward for passing Go

variables positions, Board position of each player

money , Cash amount of each player

inJail , Jail status of each player

jailTime, Amount of rounds that each player is already in jail for

isBankrupt , Bankruptcy status of each player

board , Current status of the board (e.g. owner of properties, current level of properties etc.)

turnPlayer , Player taking turn at the moment

phase, Current phase of the game (determines the possible actions)

bankMoney , Amount of money is left in the bank

goojfChOwner , Owner of the “Get out of Jail free” card of the Chance deck

goojfCcOwner , Owner of the “Get out of Jail free” card of the Community Chest deck

doublesCount , Number of consecutive doubles rolled by the current player

free4AllOrder , Order of players in free-4-all phase

debt , Debt of a player in bankruptcy-prevention phase

chanceCards, Will never change, more transparent than constant

communityChestCards, Will never change

jailIndex Index of jail square on board, will never change

vars
∆
= ⟨positions, money , inJail , jailTime, isBankrupt , board ,

turnPlayer , phase, bankMoney , goojfChOwner , goojfCcOwner ,
doublesCount , free4AllOrder , debt , chanceCards,
communityChestCards, jailIndex ⟩

abs(n)
∆
= if n < 0 then − n else n

recursive SeqSum()
SeqSum(sq)

∆
= if sq = ⟨⟩ then 0

else Head(sq) + SeqSum(Tail(sq))

incrCirc(initial , amount , maxIdx)
∆
= ((initial + amount − 1)%maxIdx) + 1

currentSquare
∆
= board [positions[turnPlayer]]

isProperty(field)
∆
= field .type ∈ {“street”, “rail”, “util”}

1

Monopoly TLA+ Specification 44

PayBank(player , amount)
∆
=

∧ amount ∈ 0 . . money [player]
∧ money ′ = [money except ! [player] = @− amount]
∧ bankMoney ′ = bankMoney + amount

CollectFromBank(player , amount)
∆
=

∧ amount > 0
∧ if bankMoney ≥ amount

then ∧money ′ = [money except ! [player] = @ + amount]
∧ bankMoney ′ = bankMoney − amount

else ∧money ′ = [money except ! [player] = @ + bankMoney]
∧ bankMoney ′ = 0

ownedPropertyIdxs(player)
∆
=

{i ∈ 1 . . Len(board) :
if ¬isProperty(board [i])
then false
else board [i].owner = player}

noStreetFromSameSetHasBuildings(strIdx)
∆
=

let p set
∆
= board [strIdx].set

in Cardinality(
{i ∈ 1 . . Len(board) :

if ¬board [i].type = “street”
then false
else ∧ board [i].level > 1

∧ board [i].set = p set
}) = 0

ownsAllOfSet(owner , set)
∆
=

∀ idx ∈ domain board :
if board [idx].type ̸= “street”
then true
else board [idx].set = set ⇒ board [idx].owner = owner

permutationSequences(S)
∆
=

{p ∈ union {[1 . . Cardinality(S) → S]} :
∀ i1, i2 ∈ domain p :
i1 ̸= i2 ⇒ p[i1] ̸= p[i2]}

initializeFree4All
∆
=

∧ phase ′ = “free-4-all”
∧ ∃ order ∈ permutationSequences({p ∈ 1 . . NumPlayers : ¬isBankrupt [p]}) :

free4AllOrder ′ = order

terminated
∆
=

Cardinality({i ∈ 1 . . NumPlayers : ¬isBankrupt [i]}) = 1

2

Monopoly TLA+ Specification 45

EndPreRoll
∆
=

∧ ¬terminated
∧ phase = “pre-roll”
∧ phase ′ = “roll”
∧ unchanged ⟨positions, money , inJail , isBankrupt , board , turnPlayer ,
bankMoney , goojfCcOwner , goojfChOwner , doublesCount , jailTime,
chanceCards, communityChestCards, debt , free4AllOrder , jailIndex ⟩

PlayGoojfCh
∆
=

∧ ¬terminated
∧ phase = “pre-roll”
∧ goojfChOwner = turnPlayer
∧ inJail [turnPlayer]
∧ inJail ′ = [inJail except ! [turnPlayer] = false]
∧ jailTime ′ = [jailTime except ! [turnPlayer] = 0]
∧ goojfChOwner ′ = NULL
∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards, debt ,

doublesCount , free4AllOrder , goojfCcOwner , isBankrupt ,
jailIndex , money , phase, positions, turnPlayer⟩

PlayGoojfCc
∆
=

∧ ¬terminated
∧ phase = “pre-roll”
∧ goojfCcOwner = turnPlayer
∧ inJail [turnPlayer]
∧ inJail ′ = [inJail except ! [turnPlayer] = false]
∧ jailTime ′ = [jailTime except ! [turnPlayer] = 0]
∧ goojfCcOwner ′ = NULL
∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards, debt ,

doublesCount , free4AllOrder , goojfChOwner , isBankrupt ,
jailIndex , money , phase, positions, turnPlayer⟩

PayJailFine
∆
=

∧ ¬terminated
∧ inJail [turnPlayer]
∧money [turnPlayer] ≥ JailFine
∧ PayBank(turnPlayer , JailFine)
∧ inJail ′ = [inJail except ! [turnPlayer] = false]
∧ jailTime ′ = [jailTime except ! [turnPlayer] = 0]
∧ unchanged ⟨board , chanceCards, communityChestCards, debt ,

doublesCount , free4AllOrder , goojfCcOwner , goojfChOwner ,
isBankrupt , jailIndex , phase, positions, turnPlayer⟩

UnmortgageProperty(player)
∆
= ∃ idx ∈ ownedPropertyIdxs(player) :

3

Monopoly TLA+ Specification 46

∧ board [idx].mortgaged
∧ let mortgageValue

∆
= board [idx].value ÷ 2

unmortgageCost
∆
= mortgageValue + (mortgageValue ÷ 10)

in ∧money [player] ≥ unmortgageCost
∧ board ′ = [board except ! [idx].mortgaged = false]
∧ PayBank(player , unmortgageCost)

MortgageProperty(player)
∆
= ∃ idx ∈ ownedPropertyIdxs(player) :

∧ ¬board [idx].mortgaged
∧ board [idx].type = “street” ⇒ noStreetFromSameSetHasBuildings(idx)
∧ let mortgageValue

∆
= board [idx].value ÷ 2

in ∧ board ′ = [board except ! [idx].mortgaged = true]
∧ CollectFromBank(player , mortgageValue)

allFromSetAreHigherOrEqualLevel(set , level)
∆
=

∀ idx ∈ domain board :
if board [idx].type ̸= “street”
then true
else board [idx].set = set ⇒ board [idx].level ≥ level

UpgradeStreet(player)
∆
= ∃ idx ∈ ownedPropertyIdxs(player) :

∧ if ¬board [idx].type = “street”
then false
else let street

∆
= board [idx]

in ∧ ¬street .mortgaged
∧ ownsAllOfSet(player , street .set)
∧ street .level < Len(board [idx].rent)
∧ allFromSetAreHigherOrEqualLevel(street .set , street .level)
∧money [player] ≥ street .houseCost
∧ board ′ = [board except ! [idx].level = @+ 1]
∧ PayBank(player , street .houseCost)

allFromSetAreLowerOrEqualLevel(set , level)
∆
=

∀ idx ∈ domain board :
if board [idx].type ̸= “street”
then true
else board [idx].set = set ⇒ board [idx].level ≤ level

DowngradeStreet(player)
∆
= ∃ idx ∈ ownedPropertyIdxs(player) :

∧ if ¬board [idx].type = “street”
then false
else let street

∆
= board [idx]

in ∧ street .level > 1
∧ allFromSetAreLowerOrEqualLevel(street .set , street .level)
∧ board ′ = [board except ! [idx].level = @− 1]
∧ CollectFromBank(player , street .houseCost ÷ 2)

4

Monopoly TLA+ Specification 47

PreRollUnmortgage
∆
=

∧ ¬terminated
∧ phase = “pre-roll”
∧UnmortgageProperty(turnPlayer)
∧ unchanged ⟨chanceCards, communityChestCards, debt ,

doublesCount , free4AllOrder , goojfCcOwner ,
goojfChOwner , inJail , isBankrupt , jailIndex ,
jailTime, phase, positions, turnPlayer⟩

PreRollMortgage
∆
=

∧ ¬terminated
∧ phase = “pre-roll”
∧MortgageProperty(turnPlayer)
∧ unchanged ⟨chanceCards, communityChestCards, debt ,

doublesCount , free4AllOrder , goojfCcOwner ,
goojfChOwner , inJail , isBankrupt , jailIndex ,
jailTime, phase, positions, turnPlayer⟩

PreRollUpgrade
∆
=

∧ ¬terminated
∧ phase = “pre-roll”
∧UpgradeStreet(turnPlayer)
∧ unchanged ⟨chanceCards, communityChestCards, debt , doublesCount ,

free4AllOrder , goojfCcOwner , goojfChOwner , inJail ,
isBankrupt , jailIndex , jailTime, phase, positions, turnPlayer⟩

PreRollDowngrade
∆
=

∧ ¬terminated
∧ phase = “pre-roll”
∧DowngradeStreet(turnPlayer)
∧ unchanged ⟨chanceCards, communityChestCards, debt , doublesCount ,

free4AllOrder , goojfCcOwner , goojfChOwner , inJail ,
isBankrupt , jailIndex , jailTime, phase, positions, turnPlayer⟩

TakePreRollAction
∆
=

∨ EndPreRoll
∨ PlayGoojfCh
∨ PlayGoojfCc
∨ PayJailFine
∨ PreRollUnmortgage
∨ PreRollMortgage
∨ PreRollUpgrade
∨ PreRollDowngrade

ChangeOwnerOfProperties(from, to)
∆
=

∧ board ′ = [i ∈ domain board 7→

5

Monopoly TLA+ Specification 48

let field
∆
= board [i]

in if isProperty(field)
then if field .owner = from

then [field except ! .owner = to]
else field

else field]
∧ if goojfCcOwner = from

then goojfCcOwner ′ = to
else unchanged ⟨goojfCcOwner⟩

∧ if goojfChOwner = from
then goojfChOwner ′ = to
else unchanged ⟨goojfChOwner⟩

CollectIfPassGo
∆
=

if positions ′[turnPlayer] < positions[turnPlayer]
then CollectFromBank(turnPlayer , PassGoReward)
else unchanged ⟨money , bankMoney⟩

MoveAfterRoll(amount)
∆
=

∧ positions ′ = [positions except ! [turnPlayer] = incrCirc(@, amount , Len(board))]
∧ CollectIfPassGo

GoToJail
∆
=

∧ inJail ′ = [inJail except ! [turnPlayer] = true]
∧ doublesCount ′ = 0
∧ positions ′ = [positions except ! [turnPlayer] = jailIndex]
∧ initializeFree4All

RollAndMove
∆
=

∃ d1, d2 ∈ 1 . . DiceMax :
∧ ¬terminated
∧ phase = “roll”
∧ inJail [turnPlayer] = false
∧ if d1 ̸= d2

then ∧MoveAfterRoll(d1 + d2)
∧ doublesCount ′ = 0
∧ phase ′ = “post-roll”
∧ unchanged ⟨inJail , free4AllOrder⟩

else if doublesCount = 2 Current throw is 3rd consecutive doubles

then ∧GoToJail
∧ unchanged ⟨bankMoney , money⟩

else ∧MoveAfterRoll(d1 + d2)
∧ doublesCount ′ = doublesCount + 1
∧ phase ′ = “post-roll”
∧ unchanged ⟨inJail , free4AllOrder⟩

∧ unchanged ⟨board , chanceCards, communityChestCards, debt , goojfCcOwner ,

6

Monopoly TLA+ Specification 49

goojfChOwner , isBankrupt , jailIndex , jailTime, turnPlayer⟩

RollInJail
∆
=

∃ d1, d2 ∈ 1 . . DiceMax :
∧ ¬terminated
∧ phase = “roll”
∧ inJail [turnPlayer] = true
∧ if d1 ̸= d2

then if jailTime[turnPlayer] = 2 has missed doubles for the 3rd time

then ∧MoveAfterRoll(d1 + d2)
∧ jailTime ′ = [jailTime except ! [turnPlayer] = 0]
∧ inJail ′ = [inJail except ! [turnPlayer] = false]
∧ if money [turnPlayer] ≥ JailFine

then ∧ PayBank(turnPlayer , JailFine)
∧ phase ′ = “post-roll”
∧ unchanged ⟨debt⟩

else ∧ phase ′ = “bankruptcy-prevention”
∧ debt ′ = [creditor 7→ NULL,

amount 7→ JailFine,
nextPhase 7→ “post-roll”]

∧ unchanged ⟨free4AllOrder⟩
else ∧ jailTime ′ = [jailTime except ! [turnPlayer] = @ + 1]

∧ initializeFree4All
∧ unchanged ⟨money , bankMoney , positions, inJail , debt⟩

else ∧MoveAfterRoll(d1 + d2) Player will not get to roll again even if they rolled doubles.

∧ jailTime ′ = [jailTime except ! [turnPlayer] = 0]
∧ inJail ′ = [inJail except ! [turnPlayer] = false]
∧ phase ′ = “post-roll”
∧ unchanged ⟨free4AllOrder , debt⟩

∧ unchanged ⟨board , chanceCards, communityChestCards, doublesCount ,
goojfCcOwner , goojfChOwner , isBankrupt , jailIndex , turnPlayer⟩

TakeRollAction
∆
= ∨ RollAndMove

∨ RollInJail

BuyProperty
∆
=

if ¬isProperty(currentSquare)
then false
else ∧ ¬terminated

∧ phase = “post-roll”
∧ currentSquare.owner = NULL
∧money [turnPlayer] ≥ currentSquare.value
∧ PayBank(turnPlayer , currentSquare.value)
∧ board ′ = [board except ! [positions[turnPlayer]].owner = turnPlayer]
∧ phase ′ = “doubles-check”
∧ unchanged ⟨inJail , positions, turnPlayer , doublesCount , jailTime,

7

Monopoly TLA+ Specification 50

isBankrupt , goojfCcOwner , goojfChOwner , chanceCards,
communityChestCards, debt , free4AllOrder , jailIndex ⟩

PayPlayer(from, to, amount)
∆
=

money ′ = [money except ! [from] = @− amount ,
! [to] = @ + amount]

getStreetRent(street)
∆
=

if street .level > 1
then street .rent [street .level]
else if ownsAllOfSet(street .owner , street .set)

then street .rent [1] ∗ 2
else street .rent [1]

PayStreetRent
∆
=

if currentSquare.type ̸= “street”
then false
else ∧ ¬terminated

∧ phase = “post-roll”
∧ let rentCost

∆
= getStreetRent(currentSquare)

owner
∆
= currentSquare.owner

in ∧ owner /∈ {NULL, turnPlayer}
∧ ¬currentSquare.mortgaged
∧money [turnPlayer] ≥ rentCost
∧ PayPlayer(turnPlayer , owner , rentCost)
∧ phase ′ = “doubles-check”

∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards,
debt , doublesCount , free4AllOrder , goojfCcOwner , goojfChOwner ,
inJail , isBankrupt , jailIndex , jailTime, positions, turnPlayer⟩

PreventBankruptcyOnStreetRent
∆
=

if currentSquare.type ̸= “street”
then false
else ∧ ¬terminated

∧ phase = “post-roll”
∧ let rentCost

∆
= getStreetRent(currentSquare)

owner
∆
= currentSquare.owner

in ∧ owner /∈ {NULL, turnPlayer}
∧ ¬currentSquare.mortgaged
∧money [turnPlayer] < rentCost
∧ debt = NULL
∧ debt ′ = [creditor 7→ owner ,

amount 7→ rentCost ,
nextPhase 7→ “doubles-check”]

∧ phase ′ = “bankruptcy-prevention”
∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards, doublesCount ,

8

Monopoly TLA+ Specification 51

free4AllOrder , goojfCcOwner , goojfChOwner , inJail , isBankrupt ,
jailIndex , jailTime, money , positions, turnPlayer⟩

getRailRent(owner)
∆
=

let ownedRails
∆
= Cardinality({

i ∈ domain board :
if ¬board [i].type = “rail”
then false
else board [i].owner = owner

})
in BaseRailRent ∗ 2(ownedRails−1)

PayRailRent
∆
=

if currentSquare.type ̸= “rail”
then false
else ∧ ¬terminated

∧ phase = “post-roll”
∧ let owner

∆
= currentSquare.owner

rentCost
∆
= getRailRent(owner)

in ∧ owner /∈ {NULL, turnPlayer}
∧ ¬currentSquare.mortgaged
∧money [turnPlayer] ≥ rentCost
∧ PayPlayer(turnPlayer , owner , rentCost)
∧ phase ′ = “doubles-check”

∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards, debt ,
doublesCount , free4AllOrder , goojfCcOwner , goojfChOwner , inJail ,
isBankrupt , jailIndex , jailTime, positions, turnPlayer⟩

PreventBankruptcyOnRailRent
∆
=

if currentSquare.type ̸= “rail”
then false
else ∧ ¬terminated

∧ phase = “post-roll”
∧ let owner

∆
= currentSquare.owner

rentCost
∆
= getRailRent(owner)

in ∧ owner /∈ {NULL, turnPlayer}
∧ ¬currentSquare.mortgaged
∧money [turnPlayer] < rentCost
∧ debt = NULL
∧ debt ′ = [creditor 7→ owner ,

amount 7→ rentCost ,
nextPhase 7→ “doubles-check”]

∧ phase ′ = “bankruptcy-prevention”
∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards, doublesCount ,

free4AllOrder , goojfCcOwner , goojfChOwner , inJail , isBankrupt , jailIndex ,
jailTime, money , positions, turnPlayer⟩

9

Monopoly TLA+ Specification 52

ownsBothUtilities(owner)
∆
=

let ownedUtils
∆
= Cardinality({

i ∈ domain board :
if board [i].type ̸= “util”
then false
else board [i].owner = owner

})
in ownedUtils = 2

TryPayUtilRent
∆
=

if currentSquare.type ̸= “util”
then false
else ∃ d1, d2 ∈ 1 . . DiceMax :

∧ ¬terminated
∧ phase = “post-roll”
∧ let owner

∆
= currentSquare.owner

multiplier
∆
= if ownsBothUtilities(owner) then 10 else 4

rentCost
∆
= (d1 + d2) ∗multiplier

in ∧ owner /∈ {NULL, turnPlayer}
∧ if money [turnPlayer] ≥ rentCost

then ∧ PayPlayer(turnPlayer , owner , rentCost)
∧ phase ′ = “doubles-check”
∧ unchanged ⟨debt⟩

else ∧ debt = NULL
∧ debt ′ = [creditor 7→ owner ,

amount 7→ rentCost ,
nextPhase 7→ “doubles-check”]

∧ phase ′ = “bankruptcy-prevention”
∧ unchanged ⟨money⟩

∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards, doublesCount ,
free4AllOrder , goojfCcOwner , goojfChOwner , inJail , isBankrupt ,
jailIndex , jailTime, positions, turnPlayer⟩

PayTax
∆
=

if currentSquare.type ̸= “tax”
then false
else ∧ ¬terminated

∧ phase = “post-roll”
∧money [turnPlayer] ≥ currentSquare.value
∧ PayBank(turnPlayer , currentSquare.value)
∧ phase ′ = “doubles-check”
∧ unchanged ⟨board , chanceCards, communityChestCards, debt ,

doublesCount , free4AllOrder , goojfCcOwner , goojfChOwner ,
inJail , isBankrupt , jailIndex , jailTime, positions, turnPlayer⟩

PreventBankruptcyOnTax
∆
=

10

Monopoly TLA+ Specification 53

if currentSquare.type ̸= “tax”
then false
else ∧ ¬terminated

∧ phase = “post-roll”
∧money [turnPlayer] < currentSquare.value
∧ debt ′ = [creditor 7→ NULL,

amount 7→ currentSquare.value,
nextPhase 7→ “doubles-check”]

∧ phase ′ = “bankruptcy-prevention”
∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards,

doublesCount , free4AllOrder , goojfCcOwner , goojfChOwner ,
inJail , isBankrupt , jailIndex , jailTime, money , positions, turnPlayer⟩

AuctionProperty
∆
=

if ¬isProperty(currentSquare)
then false
else ∧ ¬terminated

∧ phase = “post-roll”
∧ currentSquare.owner = NULL
∧ ∨ ∃winner ∈ 1 . . NumPlayers :

∃ bid ∈ {1, 5, 10} : should theoretically be 1 . . money[winner] but this makes state space explode

∧money [winner] ≥ bid would be unnecessary with 1 . . money[winner]

∧ ¬isBankrupt [winner]
∧ PayBank(winner , bid)
∧ board ′ = [board except ! [positions[turnPlayer]].owner = winner]

∨ unchanged ⟨board , bankMoney , money⟩
∧ phase ′ = “doubles-check”
∧ unchanged ⟨chanceCards, communityChestCards, debt , doublesCount ,

free4AllOrder , goojfCcOwner , goojfChOwner , inJail , isBankrupt ,
jailIndex , jailTime, positions, turnPlayer⟩

LandOnGoToJail
∆
=

∧ ¬terminated
∧ currentSquare.type = “go-to-jail”
∧GoToJail
∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards,

debt , goojfCcOwner , goojfChOwner , isBankrupt , jailIndex ,
jailTime, money , turnPlayer⟩

AdvanceTo(destinationIdx)
∆
=

∧ positions ′ = [positions except ! [turnPlayer] = destinationIdx]
∧ CollectIfPassGo

ExecuteCard(card)
∆
=

let type
∆
= card .type

11

Monopoly TLA+ Specification 54

in case type = “collect” → ∧ CollectFromBank(turnPlayer , card .amount)
∧ phase ′ = “doubles-check”
∧ unchanged ⟨debt , positions, goojfCcOwner , goojfChOwner ,

doublesCount , inJail , free4AllOrder⟩
2 type = “pay” → if money [turnPlayer] ≥ card .amount

then ∧ PayBank(turnPlayer , card .amount)
∧ phase ′ = “doubles-check”
∧ unchanged ⟨debt , positions, goojfCcOwner , goojfChOwner ,

doublesCount , inJail , free4AllOrder⟩
else ∧ debt ′ = [creditor 7→ NULL,

amount 7→ card .amount ,
nextPhase 7→ “doubles-check”]

∧ phase ′ = “bankruptcy-prevention”
∧ unchanged ⟨money , bankMoney , goojfCcOwner ,

goojfChOwner , positions, doublesCount ,
inJail , free4AllOrder⟩

2 type = “advance” → ∧AdvanceTo(card .square)
∧ unchanged ⟨debt , goojfCcOwner , goojfChOwner , phase,

doublesCount , inJail , free4AllOrder⟩
2 type = “go-to-jail” → ∧GoToJail

∧ unchanged ⟨debt , goojfCcOwner , goojfChOwner ,
money , bankMoney⟩

2 type = “goojf-cc” → ∧ goojfCcOwner ′ = turnPlayer
∧ phase ′ = “doubles-check”
∧ unchanged ⟨money , bankMoney , positions, goojfChOwner ,

debt , doublesCount , inJail , free4AllOrder⟩
2 type = “goojf-ch” → ∧ goojfChOwner ′ = turnPlayer

∧ phase ′ = “doubles-check”
∧ unchanged ⟨money , bankMoney , positions, goojfCcOwner ,

debt , doublesCount , inJail , free4AllOrder⟩

DrawAndExecuteChanceCard
∆
=

if currentSquare.type ̸= “chance”
then false
else ∧ ¬terminated

∧ phase = “post-roll”
∧ ∃ cardIdx ∈ if goojfChOwner = NULL

then 1 . . Len(chanceCards)
else 1 . . (Len(chanceCards)− 1) :

let card
∆
= chanceCards[cardIdx]

in ExecuteCard(card)
∧ unchanged ⟨board , chanceCards, communityChestCards, isBankrupt ,

jailIndex , jailTime, turnPlayer⟩

DrawAndExecuteCommunityChestCard
∆
=

12

Monopoly TLA+ Specification 55

if currentSquare.type ̸= “community-chest”
then false
else ∧ ¬terminated

∧ phase = “post-roll”
∧ ∃ cardIdx ∈ if goojfCcOwner = NULL

then 1 . . Len(communityChestCards)
else 1 . . (Len(communityChestCards)− 1) :

let card
∆
= communityChestCards[cardIdx]

in ExecuteCard(card)
∧ unchanged ⟨board , chanceCards, communityChestCards, isBankrupt ,

jailIndex , jailTime, turnPlayer⟩

EndPostRoll
∆
=

∧ phase = “post-roll”
∧ phase ′ = “doubles-check”

DoNothingOnOwnProperty
∆
=

if ¬isProperty(currentSquare)
then false
else ∧ ¬terminated

∧ currentSquare.owner = turnPlayer
∧ EndPostRoll
∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards, debt ,

doublesCount , free4AllOrder , goojfCcOwner , goojfChOwner , inJail ,
isBankrupt , jailIndex , jailTime, money , positions, turnPlayer⟩

DoNothingOnJailSquare
∆
=

∧ ¬terminated
∧ currentSquare.type = “jail”
∧ EndPostRoll
∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards, debt ,

doublesCount , free4AllOrder , goojfCcOwner , goojfChOwner , inJail ,
isBankrupt , jailIndex , jailTime, money , positions, turnPlayer⟩

DoNothingOnGo
∆
=

∧ ¬terminated
∧ currentSquare.type = “go”
∧ EndPostRoll
∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards, debt ,

doublesCount , free4AllOrder , goojfCcOwner , goojfChOwner , inJail ,
isBankrupt , jailIndex , jailTime, money , positions, turnPlayer⟩

DoNothingOnFreeParking
∆
=

∧ ¬terminated

13

Monopoly TLA+ Specification 56

∧ currentSquare.type = “free-parking”
∧ EndPostRoll
∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards, debt ,

doublesCount , free4AllOrder , goojfCcOwner , goojfChOwner , inJail ,
isBankrupt , jailIndex , jailTime, money , positions, turnPlayer⟩

DoNothingOnMortgagedProperty
∆
=

if ¬isProperty(currentSquare)
then false
else ∧ ¬terminated

∧ currentSquare.owner ̸= turnPlayer
∧ currentSquare.mortgaged
∧ EndPostRoll
∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards, debt ,

doublesCount , free4AllOrder , goojfCcOwner , goojfChOwner , inJail ,
isBankrupt , jailIndex , jailTime, money , positions, turnPlayer⟩

TakePostRollAction
∆
=

∨DoNothingOnOwnProperty
∨DoNothingOnJailSquare
∨DoNothingOnGo
∨DoNothingOnFreeParking
∨DoNothingOnMortgagedProperty
∨ PayStreetRent
∨ PayRailRent
∨ PreventBankruptcyOnStreetRent
∨ PreventBankruptcyOnRailRent
∨ TryPayUtilRent
∨ BuyProperty
∨AuctionProperty
∨ PayTax
∨ PreventBankruptcyOnTax
∨ LandOnGoToJail
∨DrawAndExecuteChanceCard
∨DrawAndExecuteCommunityChestCard

DoublesCheck
∆
=

∧ ¬terminated
∧ phase = “doubles-check”
∧ if doublesCount > 0

then ∧ phase ′ = “pre-roll”
∧ unchanged ⟨free4AllOrder⟩

else initializeFree4All
∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards, debt ,

doublesCount , goojfCcOwner , goojfChOwner , inJail , isBankrupt ,

14

Monopoly TLA+ Specification 57

jailIndex , jailTime, money , positions, turnPlayer⟩

PayOffDebt
∆
=

if phase ̸= “bankruptcy-prevention”
then false
else ∧ ¬terminated

∧money [turnPlayer] ≥ debt .amount
∧ if debt .creditor = NULL

then PayBank(turnPlayer , debt .amount)
else ∧ PayPlayer(turnPlayer , debt .creditor , debt .amount)

∧ unchanged ⟨bankMoney⟩
∧ phase ′ = debt .nextPhase
∧ debt ′ = NULL
∧ unchanged ⟨board , chanceCards, communityChestCards, doublesCount ,

free4AllOrder , goojfCcOwner , goojfChOwner , inJail , isBankrupt ,
jailIndex , jailTime, positions, turnPlayer⟩

BankruptcyPreventionMortgage
∆
=

if phase ̸= “bankruptcy-prevention”
then false
else ∧ ¬terminated

∧money [turnPlayer] < debt .amount
∧MortgageProperty(turnPlayer)
∧ unchanged ⟨chanceCards, communityChestCards, debt ,

doublesCount , free4AllOrder , goojfCcOwner ,
goojfChOwner , inJail , isBankrupt , jailIndex ,
jailTime, phase, positions, turnPlayer⟩

BankruptcyPreventionDowngrade
∆
=

if phase ̸= “bankruptcy-prevention”
then false
else ∧ ¬terminated

∧money [turnPlayer] < debt .amount
∧DowngradeStreet(turnPlayer)
∧ unchanged ⟨chanceCards, communityChestCards, debt ,

doublesCount , free4AllOrder , goojfCcOwner ,
goojfChOwner , inJail , isBankrupt , jailIndex ,
jailTime, phase, positions, turnPlayer⟩

recursive BoardAfterBankruptcyToBank()
BoardAfterBankruptcyToBank(currentBoard)

∆
=

if currentBoard = ⟨⟩ then ⟨⟩
else let field

∆
= Head(currentBoard)

in if ¬isProperty(field)
then ⟨field⟩ ◦ BoardAfterBankruptcyToBank(Tail(currentBoard))
else if field .owner = turnPlayer

15

Monopoly TLA+ Specification 58

then let newField
∆
= [field except ! .owner = NULL,

! .mortgaged = false]
in ⟨newField⟩ ◦ BoardAfterBankruptcyToBank(Tail(currentBoard))

else ⟨field⟩ ◦ BoardAfterBankruptcyToBank(Tail(currentBoard))

TransferAllAssetsToBank
∆
=

∧ PayBank(turnPlayer , money [turnPlayer])
∧ if goojfChOwner = turnPlayer

then goojfChOwner ′ = NULL
else unchanged ⟨goojfChOwner⟩

∧ if goojfCcOwner = turnPlayer
then goojfCcOwner ′ = NULL
else unchanged ⟨goojfCcOwner⟩

∧ board ′ = BoardAfterBankruptcyToBank(board)

recursive BoardAfterBankruptcyToPlayer(,)
BoardAfterBankruptcyToPlayer(creditor , currentBoard)

∆
=

if currentBoard = ⟨⟩ then ⟨⟩
else let field

∆
= Head(currentBoard)

in if ¬isProperty(field)
then ⟨field⟩ ◦ BoardAfterBankruptcyToPlayer(creditor , Tail(currentBoard))
else if field .owner = turnPlayer

then let newField
∆
= [field except ! .owner = creditor]

in ⟨newField⟩ ◦ BoardAfterBankruptcyToPlayer(creditor , Tail(currentBoard))
else ⟨field⟩ ◦ BoardAfterBankruptcyToPlayer(creditor , Tail(currentBoard))

TransferAllAssetsToPlayer(creditor)
∆
=

∧ PayPlayer(turnPlayer , creditor , money [turnPlayer])
∧ if goojfChOwner = turnPlayer

then goojfChOwner ′ = creditor
else unchanged ⟨goojfChOwner⟩

∧ if goojfCcOwner = turnPlayer
then goojfCcOwner ′ = creditor
else unchanged ⟨goojfCcOwner⟩

∧ board ′ = BoardAfterBankruptcyToPlayer(creditor , board)

recursive GiveTurnToNextLivePlayer()
GiveTurnToNextLivePlayer(curr)

∆
=

∧ let next
∆
= incrCirc(curr , 1, NumPlayers)

in if isBankrupt [next]
then GiveTurnToNextLivePlayer(next)
else ∧ turnPlayer ′ = next

∧ doublesCount ′ = 0
∧ free4AllOrder ′ = NULL
∧ phase ′ = “pre-roll”

16

Monopoly TLA+ Specification 59

GoBankrupt
∆
=

if phase ̸= “bankruptcy-prevention”
then false
else ∧ ¬terminated

∧money [turnPlayer] < debt .amount
∧ ∀ idx ∈ domain board :

if ¬isProperty(board [idx]) then true
else board [idx].owner = turnPlayer ⇒ board [idx].mortgaged

∧ if debt .creditor = NULL
then TransferAllAssetsToBank
else ∧ TransferAllAssetsToPlayer(debt .creditor)

∧ unchanged ⟨bankMoney⟩
∧ isBankrupt ′ = [isBankrupt except ! [turnPlayer] = true]
∧GiveTurnToNextLivePlayer(turnPlayer)
∧ unchanged ⟨chanceCards, communityChestCards, debt , inJail ,

jailIndex , jailTime, positions⟩

TakeBankruptcyPreventionAction
∆
=

∨ PayOffDebt
∨ BankruptcyPreventionMortgage
∨ BankruptcyPreventionDowngrade
∨GoBankrupt

ConcludeFree4AllActions
∆
=

∧ ¬terminated
∧ phase = “free-4-all”
∧ if free4AllOrder = ⟨⟩

then false
else ∧ free4AllOrder ′ = Tail(free4AllOrder)

∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards,
debt , doublesCount , goojfCcOwner , goojfChOwner , inJail ,
isBankrupt , jailIndex , jailTime, money , phase,
positions, turnPlayer⟩

F4AUnmortgage
∆
=

∧ ¬terminated
∧ phase = “free-4-all”
∧ if free4AllOrder = ⟨⟩

then false
else let player

∆
= Head(free4AllOrder)

in UnmortgageProperty(player)
∧ unchanged ⟨chanceCards, communityChestCards, debt , doublesCount ,

free4AllOrder , goojfCcOwner , goojfChOwner , inJail , isBankrupt ,
jailIndex , jailTime, phase, positions, turnPlayer⟩

F4AMortgage
∆
=

17

Monopoly TLA+ Specification 60

∧ ¬terminated
∧ phase = “free-4-all”
∧ if free4AllOrder = ⟨⟩

then false
else let player

∆
= Head(free4AllOrder)

in MortgageProperty(player)
∧ unchanged ⟨chanceCards, communityChestCards, debt , doublesCount ,

free4AllOrder , goojfCcOwner , goojfChOwner , inJail , isBankrupt ,
jailIndex , jailTime, phase, positions, turnPlayer⟩

F4AUpgrade
∆
=

∧ ¬terminated
∧ phase = “free-4-all”
∧ if free4AllOrder = ⟨⟩

then false
else let player

∆
= Head(free4AllOrder)

in UpgradeStreet(player)
∧ unchanged ⟨chanceCards, communityChestCards, debt , doublesCount ,

free4AllOrder , goojfCcOwner , goojfChOwner , inJail , isBankrupt ,
jailIndex , jailTime, phase, positions, turnPlayer⟩

F4ADowngrade
∆
=

∧ ¬terminated
∧ phase = “free-4-all”
∧ if free4AllOrder = ⟨⟩

then false
else let player

∆
= Head(free4AllOrder)

in DowngradeStreet(player)
∧ unchanged ⟨chanceCards, communityChestCards, debt , doublesCount ,

free4AllOrder , goojfCcOwner , goojfChOwner , inJail , isBankrupt ,
jailIndex , jailTime, phase, positions, turnPlayer⟩

EndTurn
∆
=

∧ ¬terminated
∧ phase = “free-4-all”
∧ free4AllOrder = ⟨⟩
∧GiveTurnToNextLivePlayer(turnPlayer)
∧ unchanged ⟨bankMoney , board , chanceCards, communityChestCards,

debt , goojfCcOwner , goojfChOwner , inJail , isBankrupt ,
jailIndex , jailTime, money , positions⟩

TakeFree4AllAction
∆
=

∨ ConcludeFree4AllActions
∨ F4AUnmortgage
∨ F4AMortgage
∨ F4AUpgrade

18

Monopoly TLA+ Specification 61

∨ F4ADowngrade
∨ EndTurn

Init
∆
= ∧ turnPlayer = 1

∧ positions = [i ∈ 1 . . NumPlayers 7→ 1]
∧money = [i ∈ 1 . . NumPlayers 7→ StartingMoney]
∧ inJail = [i ∈ 1 . . NumPlayers 7→ false]
∧ jailTime = [i ∈ 1 . . NumPlayers 7→ 0]
∧ isBankrupt = [i ∈ 1 . . NumPlayers 7→ false]
∧ phase = “pre-roll”
∧ bankMoney = TotalMoney − (NumPlayers ∗ StartingMoney)
∧ goojfChOwner = NULL
∧ goojfCcOwner = NULL
∧ doublesCount = 0
∧ board = ⟨

[type 7→ “go”],
[type 7→ “street”, value 7→ 20, owner 7→ NULL, set 7→ 1, level 7→ 1,

rent 7→ ⟨1, 4, 10⟩, houseCost 7→ 10, mortgaged 7→ false],
[type 7→ “street”, value 7→ 22, owner 7→ NULL, set 7→ 1, level 7→ 1,

rent 7→ ⟨2, 8, 20⟩, houseCost 7→ 12, mortgaged 7→ false],
[type 7→ “community-chest”],
[type 7→ “chance”],
[type 7→ “tax”, value 7→ 20],
[type 7→ “rail”, value 7→ 25, owner 7→ NULL, mortgaged 7→ false],
[type 7→ “jail”],
[type 7→ “rail”, value 7→ 25, owner 7→ NULL, mortgaged 7→ false],
[type 7→ “free-parking”],
[type 7→ “util”, value 7→ 21, owner 7→ NULL, mortgaged 7→ false],
[type 7→ “util”, value 7→ 21, owner 7→ NULL, mortgaged 7→ false],
[type 7→ “go-to-jail”]⟩

∧ jailIndex = 8
∧ free4AllOrder = NULL
∧ debt = NULL
∧ chanceCards = ⟨

[type 7→ “collect”, amount 7→ 10],
[type 7→ “pay”, amount 7→ 30],
[type 7→ “advance”, square 7→ 7],
[type 7→ “go-to-jail”],
[type 7→ “goojf-ch”]⟩

∧ communityChestCards = ⟨
[type 7→ “collect”, amount 7→ 20],
[type 7→ “pay”, amount 7→ 20],
[type 7→ “advance”, square 7→ 1],
[type 7→ “go-to-jail”],
[type 7→ “goojf-cc”]⟩

19

Monopoly TLA+ Specification 62

Next
∆
= ∨ TakePreRollAction

∨ TakeRollAction
∨ TakePostRollAction
∨DoublesCheck
∨ TakeBankruptcyPreventionAction
∨ TakeFree4AllAction

FairSpec
∆
=

∧ Init
∧2[Next]vars
∧WFvars(Next)

TypeOK
∆
= ∧ turnPlayer ∈ 1 . . NumPlayers

∧ ∀ p ∈ 1 . . NumPlayers :
∧ positions[p] ∈ 1 . . Len(board)
∧money [p] ∈ 0 . . TotalMoney
∧ inJail [p] ∈ boolean
∧ isBankrupt [p] ∈ boolean
∧ jailTime[p] ∈ 0 . . 2

∧ phase ∈ {“pre-roll”, “roll”, “post-roll”, “bankruptcy-prevention”,
“doubles-check”, “free-4-all”}

∧ bankMoney ∈ 0 . . TotalMoney
∧ ∀ i ∈ domain board :

∧ board [i].type ∈ {“go”, “street”, “community-chest”,
“chance”, “tax”, “rail”, “jail”,
“free-parking”, “util”, “go-to-jail”}

∧ isProperty(board [i]) ⇒ ∧ board [i].value ∈ Nat
∧ board [i].owner ∈ 1 . . NumPlayers ∪ {NULL}
∧ board [i].mortgaged ∈ boolean

∧ board [i].type = “street” ⇒ ∧ board [i].set ∈ Nat
∧ ∀ j ∈ domain board [i].rent : j ∈ Nat
∧ board [i].level ∈ domain board [i].rent
∧ board [i].houseCost ∈ Nat

∧ board [i].type = “tax” ⇒ board [i].value ∈ Nat
∧ goojfChOwner ∈ 1 . . NumPlayers ∪ {NULL}
∧ goojfCcOwner ∈ 1 . . NumPlayers ∪ {NULL}
∧ doublesCount ∈ 0 . . 2
∧ free4AllOrder ∈ {NULL} ∪ Seq(1 . . NumPlayers)
∧ free4AllOrder ̸= NULL ⇒

∀ i1, i2 ∈ domain free4AllOrder :
∨ i1 = i2
∨ free4AllOrder [i1] ̸= free4AllOrder [i2]

∧ debt ∈ {NULL} ∪ [creditor : {NULL} ∪ 1 . . NumPlayers,
amount : Nat ,
nextPhase : {“pre-roll”, “roll”, “post-roll”,

20

Monopoly TLA+ Specification 63

“doubles-check”, “free-4-all”}]
∧ ∀ i ∈ domain chanceCards :

∧ chanceCards[i].type ∈ {“collect”, “pay”, “advance”,
“go-to-jail”, “goojf-ch”}

∧ chanceCards[i].type ∈ {“collect”, “pay”}
⇒ chanceCards[i].amount ∈ Nat

∧ chanceCards[i].type = “advance” ⇒ chanceCards[i].square ∈ domain board
∧ ∀ i ∈ domain communityChestCards :

∧ communityChestCards[i].type ∈ {“collect”, “pay”, “advance”,
“go-to-jail”, “goojf-cc”}

∧ communityChestCards[i].type ∈ {“collect”, “pay”}
⇒ communityChestCards[i].amount ∈ Nat

∧ communityChestCards[i].type = “advance”
⇒ chanceCards[i].square ∈ domain board

∧ jailIndex ∈ domain board

InvNoPossessionsIfBankrupt
∆
=

∀ p ∈ 1 . . NumPlayers :
isBankrupt [p] ⇒ ∧ Cardinality(ownedPropertyIdxs(p)) = 0

∧money [p] = 0
∧ goojfChOwner ̸= p
∧ goojfCcOwner ̸= p

InvNoActionsPossibleIfBankrupt
∆
=

∀ p ∈ 1 . . NumPlayers :
isBankrupt [p] ⇒ ∧ turnPlayer ̸= p

∧ free4AllOrder ̸= NULL
⇒ ∀ i ∈ domain free4AllOrder : free4AllOrder [i] ̸= p

InvNoDebtToBankruptPlayer
∆
=

if debt = NULL
then true
else debt .creditor ̸= NULL ⇒ ¬isBankrupt [debt .creditor]

InvConservationOfMoney
∆
=

bankMoney + SeqSum(money) = TotalMoney

InvStreetLevelRange
∆
=

∀ i1, i2 ∈ domain board :
if board [i1].type ̸= “street” ∨ board [i2].type ̸= “street”
then true
else board [i1].set = board [i2].set

⇒ abs(board [i1].level − board [i2].level) ≤ 1

21

Monopoly TLA+ Specification 64

B
Auction1 TLA+ Specification

Starts on next page.

module Auction1
extends Naturals

constants UNKNOWN , NONE , Participants, MaxAmount

variables initialMoney , lastBid , winner

A1vars
∆
= ⟨initialMoney , lastBid , winner⟩

A1Bid
∆
=

∧ ∀ p ∈ Participants : winner [p] = UNKNOWN
∧ ∃ p ∈ Participants :

∃newBid ∈ (lastBid [p] + 1) . . initialMoney [p] :
lastBid ′ = [lastBid except ! [p] = newBid]

∧ unchanged ⟨winner , initialMoney⟩

A1FirstChooseWinner
∆
=

∧ ∀ p ∈ Participants : winner [p] = UNKNOWN
∧ ∨ ∃ p, p2 ∈ Participants :

∧ ∀ p3 ∈ Participants \ {p} : lastBid [p] > lastBid [p3]
∧ winner ′ = [winner except ! [p2] = p]

∨ ∃ p ∈ Participants : winner ′ = [winner except ! [p] = NONE]
∧ unchanged ⟨lastBid , initialMoney⟩

A1OthersChooseWinner
∆
=

∧ ∃ p, p2 ∈ Participants :
∧ winner [p] ̸= UNKNOWN
∧ winner [p2] = UNKNOWN
∧ winner ′ = [winner except ! [p2] = winner [p]]

∧ unchanged ⟨lastBid , initialMoney⟩

A1Init
∆
=

∧ initialMoney ∈ [Participants → 0 . . MaxAmount]
∧ lastBid = [p ∈ Participants 7→ 0]
∧ winner = [p ∈ Participants 7→ UNKNOWN]

A1Next
∆
=

∨A1Bid
∨A1FirstChooseWinner
∨A1OthersChooseWinner

A1TypeOK
∆
=

∧ initialMoney ∈ [Participants → 0 . . MaxAmount]
∧ lastBid ∈ [Participants → Nat]
∧ winner ∈ [Participants →

Participants ∪ {UNKNOWN , NONE}]

terminated
∆
= ∀ p ∈ Participants : winner [p] ̸= UNKNOWN

1

Auction1 TLA+ Specification 66

agreed
∆
= ∀ p, p2 ∈ Participants :

∨ winner [p] = UNKNOWN
∨ winner [p2] = UNKNOWN
∨ winner [p] = winner [p2]

solvable
∆
= ∀ p ∈ Participants :

lastBid [p] ∈ 0 . . (initialMoney [p])

winWithHigherBid
∆
= ∀ p, p2 ∈ Participants :

winner [p2] = p ⇒ lastBid [p] > lastBid [p2] ∨ p = p2

valid
∆
= solvable ∧ winWithHigherBid

winnerStaysSame
∆
= ∀ p ∈ Participants :

winner [p] ̸= UNKNOWN ⇒ winner ′[p] = winner [p]

termination
∆
= 32terminated liveness

agreement
∆
= 2agreed safety

validity
∆
= 2valid safety

integrity
∆
= 2[winnerStaysSame]A1vars safety

A1FairSpec
∆
=

∧A1Init
∧2[A1Next]A1vars

∧WFA1vars(A1FirstChooseWinner)
∧WFA1vars(A1OthersChooseWinner)

2

Auction1 TLA+ Specification 67

C
Auction2 TLA+ Specification

Starts on next page.

module Auction2
extends Naturals, FiniteSets

constants NULL, Participants, MaxAmount , UNKNOWN , NONE

variables initialMoney , lastBid , bid , round , passed , winner

A2vars
∆
= ⟨initialMoney , lastBid , bid , round , passed , winner⟩

p is ready to act once all others have passed or caught up.

readyForAction(p)
∆
=

∀ p2 ∈ Participants :
∨ passed [p2]
∨ round [p] = round [p2]

A2Init
∆
=

∧ lastBid = [p ∈ Participants 7→ 0]
∧ bid = [p ∈ Participants 7→ NULL]
∧ round = [p ∈ Participants 7→ 1]
∧ passed = [p ∈ Participants 7→ false]
∧ initialMoney ∈ [Participants → 0 . . MaxAmount]
∧ winner = [p ∈ Participants 7→ UNKNOWN]

A2Bid
∆
= ∃ p ∈ Participants :

∧ winner [p] = UNKNOWN
∧ ¬passed [p]
∧ bid [p] = NULL
∧ ∃ p2 ∈ Participants \ {p} : round [p2] = round [p]
∧ readyForAction(p)
∧ ∃newBid ∈ (lastBid [p] + 1) . . initialMoney [p] :

∧ ∀ p2 ∈ Participants : newBid > lastBid [p2]
∧ bid ′ = [bid except ! [p] = newBid]

∧ unchanged ⟨lastBid , round , passed , initialMoney , winner⟩

A2Stand
∆
= ∃ p ∈ Participants :

∧ winner [p] = UNKNOWN
∧ ¬passed [p]
∧ bid [p] = NULL
∧ ∃ p2 ∈ Participants \ {p} : round [p2] = round [p]
∧ ∀ p2 ∈ Participants \ {p} : lastBid [p2] < lastBid [p]
∧ readyForAction(p)
∧ bid ′ = [bid except ! [p] = lastBid [p]]
∧ unchanged ⟨lastBid , round , passed , initialMoney , winner⟩

A2Pass
∆
= ∃ p ∈ Participants :

∧ winner [p] = UNKNOWN

1

Auction2 TLA+ Specification 69

∧ ¬passed [p]
∧ bid [p] = NULL
∧ ∃ p2 ∈ Participants \ {p} : round [p2] = round [p]
∧ readyForAction(p)
∧ passed ′ = [passed except ! [p] = true]
∧ unchanged ⟨bid , lastBid , round , initialMoney , winner⟩

A2NextRound
∆
= ∃ p ∈ Participants :

∧ winner [p] = UNKNOWN
∧ Cardinality({p2 ∈ Participants : ¬passed [p2]}) ̸= 0
∧ bid [p] ̸= NULL
∧ ∀ p2 ∈ Participants :

∨ passed [p2]
∨ if round [p] = round [p2]

then bid [p2] ̸= NULL
else round [p2] > round [p]

∧ lastBid ′ = [lastBid except ! [p] = bid [p]]
∧ bid ′ = [bid except ! [p] = NULL]
∧ round ′ = [round except ! [p] = @ + 1]
∧ unchanged ⟨passed , initialMoney , winner⟩

A2ChooseWinner
∆
= ∃ p ∈ Participants :

∧ winner [p] = UNKNOWN
∧ ∨ ∧ ∀ p2 ∈ Participants : passed [p2]

∧ winner ′ = [winner except ! [p] = NONE]
∨ ∃ p2 ∈ Participants :

∧ ¬passed [p2]
∧ ∀ p3 ∈ (Participants \ {p2}) :

∧ passed [p3]
∧ lastBid [p2] > lastBid [p3]
∧ round [p2] > round [p3]

∧ winner ′ = [winner except ! [p] = p2]
∧ unchanged ⟨bid , lastBid , passed , round , initialMoney⟩

A2Next
∆
=

∨ A2Bid
∨ A2Stand
∨ A2Pass
∨ A2NextRound
∨ A2ChooseWinner

A2TypeOK
∆
=

∧ lastBid ∈ [Participants → Nat]
∧ bid ∈ [Participants → Nat ∪ {NULL}]
∧ round ∈ [Participants → Nat \ {0}]
∧ passed ∈ [Participants → boolean]

2

Auction2 TLA+ Specification 70

∧ winner ∈ [Participants → {UNKNOWN , NONE} ∪ Participants]
∧ initialMoney ∈ [Participants → 0 . . MaxAmount]

InvIncreasingBids
∆
= ∀ p ∈ Participants :

∨ bid [p] = NULL
∨ ∧ ∀ p2 ∈ Participants \ {p} :

round [p] = round [p2] ⇒ bid [p] > lastBid [p2]
∧ bid [p] ≥ lastBid [p]

A2FairSpec
∆
=

∧A2Init
∧2[A2Next]A2vars

∧WFA2vars(A2Pass)
∧WFA2vars(A2NextRound)
∧WFA2vars(A2ChooseWinner)

instance Auction1

theorem A2FairSpec ⇒ A1FairSpec

3

Auction2 TLA+ Specification 71

D
Auction3 TLA+ Specification

Starts on next page.

module Auction3
extends Naturals, FiniteSets, Sequences, TLC

constants NULL, Participants, MaxAmount , UNKNOWN , NONE , PASS , CHANGE

variables msgs, frontiers, initialMoney , lastBid , bid , round , passed , winner

A3vars
∆
= ⟨msgs, frontiers, initialMoney , lastBid , bid , round , passed , winner⟩

max (n1, n2)
∆
= if n1 > n2 then n1 else n2

knowsHasPassed(p, p2)
∆
=

∧ let lastMsgIdx
∆
= frontiers[p][p2]

in if lastMsgIdx = 0 then false
else msgs[p2][lastMsgIdx] = PASS

knownLastBid(p, p2)
∆
=

let frontier
∆
= frontiers[p]

in if frontier [p2] = 0 then 0 p knows nothing about p2

else let lastKnownMsg
∆
= msgs[p2][frontier [p2]]

in if lastKnownMsg = PASS
then if frontier [p2] = 1 then 0 p2 passed immediately

else msgs[p2][frontier [p2]− 2] PASS must be preceeded by CHANGE

else if lastKnownMsg ∈ Nat
then lastKnownMsg
else msgs[p2][frontier [p2]− 1] lastKnownMsg = CHANGE

count(el , seq)
∆
=

let recursive helper()
helper(s)

∆
=

if s = ⟨⟩ then 0
else if Head(s) = el

then 1 + helper(Tail(s))
else helper(Tail(s))

in helper(seq)

knownRound(p, p2)
∆
=

let lastMsgIdx
∆
= frontiers[p][p2]

in if lastMsgIdx = 0 then 1
else count(CHANGE , SubSeq(msgs[p2], 1, lastMsgIdx)) + 1

A3readyForAction(p)
∆
=

∀ p2 ∈ Participants :
∨ knowsHasPassed(p, p2)
∨ round [p] = knownRound(p, p2)

addMsg(p, msg)
∆
=

1

Auction3 TLA+ Specification 73

∧ frontiers ′ = [frontiers except ! [p][p] = @ + 1]
∧msgs ′ = [msgs except ! [p] = @ ◦ ⟨msg⟩]

A3Init
∆
=

∧ msgs = [p ∈ Participants 7→ ⟨⟩]
∧ frontiers = [p ∈ Participants 7→ [pa ∈ Participants 7→ 0]]
∧ lastBid = [p ∈ Participants 7→ 0]
∧ bid = [p ∈ Participants 7→ NULL]
∧ round = [p ∈ Participants 7→ 1]
∧ passed = [p ∈ Participants 7→ false]
∧ initialMoney ∈ [Participants → 0 . . MaxAmount]
∧ winner = [p ∈ Participants 7→ UNKNOWN]

A3Bid
∆
= ∃ p ∈ Participants :

∧ winner [p] = UNKNOWN
∧ ¬passed [p]
∧ bid [p] = NULL
∧ ∃ p2 ∈ Participants \ {p} : knownRound(p, p2) = round [p]
∧A3readyForAction(p)
∧ ∃newBid ∈ (lastBid [p] + 1) . . initialMoney [p] :

∧ ∀ p2 ∈ Participants : newBid > knownLastBid(p, p2)
∧ bid ′ = [bid except ! [p] = newBid]
∧ addMsg(p, newBid)

∧ unchanged ⟨lastBid , round , passed , initialMoney , winner⟩

A3Stand
∆
= ∃ p ∈ Participants :

∧ winner [p] = UNKNOWN
∧ ¬passed [p]
∧ bid [p] = NULL
∧ ∃ p2 ∈ Participants \ {p} : knownRound(p, p2) = round [p]
∧ ∀ p2 ∈ Participants \ {p} : knownLastBid(p, p2) < lastBid [p]
∧A3readyForAction(p)
∧ bid ′ = [bid except ! [p] = lastBid [p]]
∧ addMsg(p, lastBid [p])
∧ unchanged ⟨lastBid , round , passed , initialMoney , winner⟩

A3Pass
∆
= ∃ p ∈ Participants :

∧ winner [p] = UNKNOWN
∧ ¬passed [p]
∧ bid [p] = NULL
∧ ∃ p2 ∈ Participants \ {p} : knownRound(p, p2) = round [p]
∧ A3readyForAction(p)
∧ passed ′ = [passed except ! [p] = true]
∧ addMsg(p, PASS)

2

Auction3 TLA+ Specification 74

∧ unchanged ⟨bid , lastBid , round , initialMoney , winner⟩

A3NextRound
∆
= ∃ p ∈ Participants :

∧ winner [p] = UNKNOWN
∧ Cardinality({p2 ∈ Participants : ¬knowsHasPassed(p, p2)}) ̸= 0
∧ bid [p] ̸= NULL
∧ ∀ p2 ∈ Participants :

∨ knowsHasPassed(p, p2)
∨ if round [p] = knownRound(p, p2)

then if frontiers[p][p2] = 0 then false
else msgs[p2][frontiers[p][p2]] ∈ Nat

else knownRound(p, p2) > round [p]
∧ lastBid ′ = [lastBid except ! [p] = bid [p]]
∧ bid ′ = [bid except ! [p] = NULL]
∧ round ′ = [round except ! [p] = @ + 1]
∧ addMsg(p, CHANGE)
∧ unchanged ⟨passed , initialMoney , winner⟩

A3Merge
∆
= ∃ sender , receiver ∈ Participants :

∧ let sFrontier
∆
= frontiers[sender]

rFrontier
∆
= frontiers[receiver]

newRFrontier
∆
= [p ∈ Participants 7→ max (sFrontier [p], rFrontier [p])]

in frontiers ′ = [frontiers except ! [receiver] = newRFrontier]
∧ unchanged ⟨initialMoney , msgs, bid , lastBid , passed , round , winner⟩

A3ChooseWinner
∆
= ∃ p ∈ Participants :

∧ winner [p] = UNKNOWN
∧ ∨ ∧ ∀ p2 ∈ Participants : knowsHasPassed(p, p2)

∧ winner ′ = [winner except ! [p] = NONE]
∨ ∃ p2 ∈ Participants :

∧ ¬knowsHasPassed(p, p2)
∧ ∀ p3 ∈ (Participants \ {p2}) :

∧ knowsHasPassed(p, p3)
∧ knownLastBid(p, p2) > knownLastBid(p, p3)
∧ knownRound(p, p2) > knownRound(p, p3)

∧ winner ′ = [winner except ! [p] = p2]
∧ unchanged ⟨msgs, frontiers, bid , lastBid , passed , round , initialMoney⟩

A3Next
∆
=

∨ A3Bid
∨ A3Stand
∨ A3Pass
∨ A3NextRound
∨ A3Merge
∨ A3ChooseWinner

3

Auction3 TLA+ Specification 75

A3FairSpec
∆
=

∧A3Init
∧2[A3Next]A3vars

∧WFA3vars(A3Pass)
∧WFA3vars(A3NextRound)
∧WFA3vars(A3Merge)
∧WFA3vars(A3ChooseWinner)

instance Auction2

theorem A3FairSpec ⇒ A2FairSpec

4

Auction3 TLA+ Specification 76

Declaration on Scientific Integrity
(including a Declaration on Plagiarism and Fraud)
Translation from German original

Title of Thesis:

Name Assessor: __

Name Student: __

Matriculation No.: __

I attest with my signature that I have written this work independently and without outside
help. I also attest that the information concerning the sources used in this work is true and
complete in every respect. All sources that have been quoted or paraphrased have been
marked accordingly.

Additionally, I affirm that any text passages written with the help of AI-supported
technology are marked as such, including a reference to the AI-supported program used.
This paper may be checked for plagiarism and use of AI-supported technology using the
appropriate software. I understand that unethical conduct may lead to a grade of 1 or “fail”
or expulsion from the study program.

Place, Date: _______________________ Student: ____________________________

Will this work, or parts of it, be published?

No

Yes. With my signature I confirm that I agree to a publication of the work (print/digital)
in the library, on the research database of the University of Basel and/or on the
document server of the department. Likewise, I agree to the bibliographic reference in
the catalog SLSP (Swiss Library Service Platform). (cross out as applicable)

Publication as of: ___

Place, Date: _______________________ Student: ____________________________

Place, Date: _______________________ Assessor: ____________________________

Please enclose a completed and signed copy of this declaration in your Bachelor’s or Master’s thesis.

September 2023

Prof. Dr. Christian Tschudin
Luca Gloor
2022-051-189

Brugg, 17.06.2025

17.06.2025

Brugg, 17.06.2025

4

Formal Specification and Decentralized Implementation of
Monopoly Using TLA+ and Git

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Mechanics of Monopoly
	2.1.1 Components
	2.1.2 Setup
	2.1.3 Phases of a Turn
	2.1.4 Win Condition

	2.2 TLA+
	2.2.1 Definition
	2.2.2 Sets
	2.2.3 Functions
	2.2.4 Function Operators
	2.2.5 Sequences
	2.2.6 Records
	2.2.7 Constants
	2.2.8 Variables
	2.2.9 Primed Variables
	2.2.10 Stuttering Steps
	2.2.11 Weak Fairness

	2.3 Append-Only Logs
	2.4 Git
	2.4.1 Commit
	2.4.2 Remote
	2.4.2.1 Push
	2.4.2.2 Fetch

	3 Design
	3.1 General Approach Using TLA+
	3.2 Monopoly
	3.2.1 State Representation
	3.2.2 Properties
	3.2.3 Initial State
	3.2.4 Actions
	3.2.4.1 Mortgaging a Property
	3.2.4.2 Rolling While Not in Jail
	3.2.4.3 Rolling While in Jail
	3.2.4.4 Paying Rent for Utilities
	3.2.4.5 Drawing Chance/Community Chest Cards

	3.3 Auction
	3.3.1 Properties
	3.3.1.1 Termination
	3.3.1.2 Agreement
	3.3.1.3 Validity
	3.3.1.4 Integrity

	3.3.2 Abstract Model (Auction1)
	3.3.2.1 State Representation
	3.3.2.2 Actions
	3.3.2.3 Weak Fairness Assumptions

	3.3.3 Round-Based Model (Auction2)
	3.3.3.1 Withdrawing from an Auction
	3.3.3.2 Concept of a Round
	3.3.3.3 Constraints on Bidding
	3.3.3.4 Determining a Winner

	3.3.4 Append-Only Log Refinement (Auction3)
	3.3.4.1 Mapping of Actions from Round-Based Model
	3.3.4.2 Further Bidding Restrictions
	3.3.4.3 Merging Frontiers

	4 Implementation
	4.1 State Representation
	4.2 Action Execution
	4.3 Action Broadcasting and Synchronization
	4.3.1 Asynchronous Push

	4.4 Game Initialization
	4.4.1 Human-Playable
	4.4.1.1 Creating a New Game
	4.4.1.2 Joining a New Game
	4.4.1.3 Rejoining an Active Game

	4.4.2 Simulation

	5 Evaluation
	5.1 Correctness
	5.1.1 Verifying the Design
	5.1.1.1 Model-Checking with TLC
	5.1.1.2 Auction
	5.1.1.3 Monopoly

	5.1.2 Verifying the Implementation

	5.2 Performance
	5.2.1 Local Action Execution
	5.2.2 Network Considerations
	5.2.3 Number of Commits per Game
	5.2.4 Disk Usage

	6 Related Work
	6.1 Monopoly Implementations
	6.2 Append-Only Log Applications
	6.3 Formal Specifications of Games
	6.4 Relationship of Auction Protocols to Consensus
	6.5 Other Applications of TLA+

	7 Conclusion
	7.1 Future Work
	7.2 Impact of this Thesis

	Bibliography
	A Monopoly TLA+ Specification
	B Auction1 TLA+ Specification
	C Auction2 TLA+ Specification
	D Auction3 TLA+ Specification

