
SSH-based Access Control for Git Using

Git

Bachelor’s thesis

Natural Science Faculty of the University of Basel

Department of Computer Science

Computer Networks Group

cn.dmi.unibas.ch

Examiner: Prof. Dr. Christian Tschudin

Supervisor: Dr. Erick Lavoie

Pius Lukas Walser

pius.walser@stud.unibas.ch

17.06.2025

Acknowledgments

I would like to thank Prof. Dr. Christian Tschudin and Dr. Erick Lavoie for allowing me

work on this thesis and their support.

I would especially like to express my gratitude to Dr. Erick Lavoie for his feedback during

the process of writing this thesis. His expertise in this field and mentorship guided me while

writing this thesis.

Finally I would like to thank Jörg Ammann for his feedback on an earlier version of this

thesis.

ChatGPT was used to look up syntax and usage patterns for libraries. It was not used

to write any of the text.

Abstract

Administrating a Git repository can present a certain workload. We present a way to manage

a repository using commits to control access. A user can express his trust to an other user.

This creates a trust graph which is the base for calculating who can access the repository

on which way. The owner of a repository can grant read and write access while users with

this access can grant read access to other users. This is done in a secure way by using

self-certification. Incoming commits are processed by a Git hook and saved in a trust graph.

This trust graph is then translated into access privileges. These privileges are enforced by

restricting the SSH access of users to certain actions. We provide a TLA+ specification

that clearly defines the behavior of the system and show that the system implements the

specification.

Table of Contents

Acknowledgments i

Abstract ii

1 Introduction 1

1.1 Contributions . 2

1.2 Outline . 2

2 Background 3

2.1 Git . 3

2.2 Secure Shell . 3

2.3 Self-Certification . 4

2.4 TLA+ . 4

3 Model 5

3.1 Transitive Capabilities with a Replicated Trust Graph 5

3.2 Initialization . 6

3.3 User Operations as TLA+ Actions . 6

3.3.1 Adding and Removing Trust . 7

3.3.2 Merging . 7

3.4 Helper Functions . 7

3.5 Invariants . 8

3.5.1 Typing . 8

3.5.2 Local Modifications First . 8

3.6 Liveness . 9

4 Implementation 10

4.1 User Perspective . 10

4.1.1 User Operations . 10

4.2 Commit Structure . 11

4.3 Architecture . 11

4.4 Code . 12

4.4.1 Restricting SSH Access with the Authorized Key Options 12

4.4.2 Git Hook . 13

4.4.3 Installation . 14

4.5 Deployment . 14

4.5.1 Deploying the Code on the Host Machine 14

4.5.2 Deploying the Code in Docker . 15

Table of Contents iv

4.5.3 Accessing the Repository . 15

5 Evaluation 17

5.1 Correctness of the Specification . 17

5.1.1 Limiting the State Space . 17

5.1.2 Running the Model Checker . 18

5.1.3 Errors with Model Checking . 18

5.2 Security . 19

5.2.1 System Assumptions . 19

5.2.2 Assumptions on SSH and Git . 19

5.2.3 Unforgeable Commits . 19

5.2.4 Ignoring Invalid Reference Modifications 19

5.2.5 Non-replication of Invalid Commits . 20

5.2.6 Enforcing Valid Pull Access . 20

5.2.7 Enforcing Valid Push Access . 20

5.3 Deployment Tests on a Single Machine . 20

5.4 Complexity of the Implementation . 20

5.5 Actual Deployment and Usage for Collaboration on Thesis Writing 21

5.6 Updating the Software . 21

6 Related Work 22

6.1 Gitolite . 22

6.2 Grassroots Systems . 23

6.3 Other Applications on Git . 23

6.4 Secure Scuttlebutt . 23

7 Conclusions 24

7.1 Future Work . 24

Bibliography 25

Appendix A: TLA+ Module 28

1
Introduction

Using a Git repository1 is a common occurrence when developing software. It allows devel-

opers to concurrently modify the same source files and is a powerful tool for version control.

It may also be used to backup files to a different device which is best practice to ensure

those files can be recovered from a different source in case of failures.

Platforms hosting Git repositories, such as GitHub and GitLab, are very commonly

used, because they streamline the exchange of updates between repositories by keeping the

canonical version of a repository on a highly available server. These two tools provide many

features that are not part of Git itself [1, 2] such as continuous integration and deployment

tools or issue trackers as well as free hosting within certain limitations [1]. Issues might

counter-balance the convenience that such platforms offer. Platforms owners [3] might at any

time change their data policies and start using the data produced by users for new purposes,

such as training Large Language Models [4], without explicit consent.2 In reaction, some

users may simply not want their code in the hands of a major tech company.

If one does not want one’s code to be on servers owned by a big corporation or used to

train large language models there is the possibility of hosting an instance of GitLab. For

an individual maintaining a GitLab instance, this requires significant maintenance work [5]

because the platform provides numerous features related to roles, permissions, in-browser

editing, etc. [2] that are unnecessary, at the level of an individual or a small team, i.e. when

collaborating on a single repository with a limited number of collaborators and local tools.

A third alternative, is to have a repository on a server and controlling access through SSH.

When doing so, the public key of every participant has to be added to the authorized keys

file on the server that hosts the repository. Unless careful, this can give full SSH access to

the server to all authorized. The administrator of the server also has to add and remove

keys manually.

Unrestricted SSH access is rarely needed when collaborating on a Git project and poses

a security risk if one does not trust the users fully that have this type of access. Reducing

1 The words ”repository” and ”replica” are used interchangeably in this thesis and refer to the same concept.
2 Hosting platforms provide access control, allowing one to make their repository private and selectively

offer access. Nonetheless, if a repository is public on GitHub it will be used to train large language
models [4].

Introduction 2

the workload of the administrator of such a repository is also important since the time they

spend on administrating the repository can be used for more useful things.

As a group of collaborators grows, the management burden can quickly grow as well as

well as the vulnerability surface, if not careful. For example, suppose Alice is managing a

repository and Bob is collaborating with her. This means she now has to add his SSH key

manually and lets suppose she is careful and restricts his access to Git. Now imagine if Bob

wanted to show the code to his friend Carol for some help with debugging. He would need

to tell Alice to add Carol and Carol, who Alice might not know, can edit all the files in their

project or delete them. In general, this means that all permission modifications have to be

managed by the server administrator, which may represent a significant workload.

This is where the software developed in this Thesis comes in. The aim is to simplify the

hosting and managing of a Git repository using authenticated commits to manage access.

This is done by using Git hooks, a few scripts and self certifying commits. If a developer

hosts a repository they designate a public key and the user with the corresponding private

key will be treated as the owner of the server.

Using a script any user can create self certifying commits that express that they trust

another public key. After pushing these commits to the server the user holding the private

key that corresponds to this public key will now have push and pull privileges on the server

if the commit was created by the owner. If the commit was created by a user trusted by

the owner, these users will only gain pull capabilities but will not be able to push commits

to the server. A user can also create commits that express that they do not trust a user

anymore, which will remove any privileges granted to this user previously.

1.1 Contributions

We provide an easy and safe way of managing access to a shared Git repository. In addition,

we wrote and verified by model-checking a clear TLA+ specification of the software which

provides a very precise specification of the behavior of the software. Since it works only by

using features provided by Git and SSH which are needed anyway to share a repository there

is minimal overhead except for an installation of Python. Building on top of these widely

used technologies in combination with self-certification provides strong security properties

and ensures only trusted users can modify the access to the repository. It is also easy to

use because: 1) a server installation has less dependencies and configuration options than

platforms such as GitLab; and 2) it is not necessary to log into a user account on the server

to manage access permissions.

1.2 Outline

In this Thesis, we first introduce important methods and concepts (chapter 2), then present

a TLA model of the proposed solution (chapter 3) and talk about the implementation (chap-

ter 4). This is followed by an evaluation (chapter 5), a review of related work (chapter 6)

and a summary of the thesis as well as an overview of future work (chapter 7).

2
Background

2.1 Git

Git is a version control system based on commits. A commit encapsulates all changes made

to certain files and has all the meta data listed in Table 2.1. The actual changes to the files

are stored in a Git tree object which is then referenced by the commit [6, pp. 417–423].

Each commit has checksum or commit hash which is what we will call it [6, p. 16] and is

linked to any amount of previous commits which are its parents [6, p. 63]. Because of the

link to previous commits a causal ordering of the commits can be created.

Table 2.1: Fields of a Git commit [7, 8]

Field
Commit hash
Commit message
Tree hash
Parent hashes
Author name
Author email
Author date
Committer name
Committer email
Committer date
Signature

Git lets you create branches which are just a pointer to a certain commit [6, pp. 63–66].

These are stored in .git/refs/heads/<branch name> [6, pp. 425–426]. It also has hooks

where custom functionality can be added that is triggered if certain events occur [9].

2.2 Secure Shell

You can log into a server securely over an unsecure network using Secure Shell (SSH). One can

authenticate oneself using host-based authentication, public key authentication, challenge-

response authentication, or password authentication [10]. For public key authentication a

user needs a key pair consisting of a public and private key. It allows the user to authenticate

Background 4

itself to a server by uploading the public key to the server before using it for authentication.

After the symmetrical encryption is established to secure communication between the server

and the client, the client must be authenticated to be allowed access. The server uses the

public key to encrypt a challenge message to the client. If the client can prove that it

was able to decrypt this message, it has demonstrated that it owns the associated private

key [11]. The user can then log in.

2.3 Self-Certification

Self certification works by creating a file that contains a public key and a signature made

with the corresponding private key [12]. This enables anyone to certify that the file was

signed by the user in possession of this private key and therefore proving its authenticity.

This can be implemented with Git using a field of a Git commit to store the public key and

signing the commit with the corresponding private key [13].

2.4 TLA+

TLA+ is a high-level state-based modelling language for modelling distributed concurrent

systems. It uses mathematical methods to model these and provides a model checker to

ensure the model is correct. This high-level view lets you write a model while abstracting

away any details about how it should be implemented. Therefore it enables engineers to

ensure their model is accurate before implementing it. This again makes implementation

easier because one already has a model [14]. All TLA+ notation will be explained as needed

in the following Chapter.

3
Model

The design is based on an authenticated and eventually-consistent replicated trust graph.

Therefore, unless careful at the design stage, the resulting implementation may exhibit

surprising and undesired behavior, during the temporary phases of inconsistencies. To ensure

the correctness of the system, the replicated trust graph was modeled using TLA+. This

allows us to precisely define the expected behavior and enables the verification of the system’s

properties using the TLC model checker. The full TLA+ specification can be found in

Appendix A.

We first explain how the system should work to give an overview and then explain all

parts of the TLA+ specification by starting with the initialization, going over the actions,

the helper functions, the invariants and ending with the liveness properties.

3.1 Transitive Capabilities with a

Replicated Trust Graph

There are three different levels of access that can be granted by this software. One is the

owner of the repository and the person that has full SSH access to the server. If the owner

now adds trust to Person A, Person A will be able to push new commits to the server and

pull other commits from the server. If Person A now adds trust for Person B, who is not

trusted by the owner directly, Person B will only be able to pull commits from the server

but will not be able to push their own commits to the server.

At a high-level, we implement those capabilities by having each participant signal mod-

ification of their trust towards another participant in operations, which we call commits,

sequentially. Commits are combined in a data structure that only the committer may mod-

ify, which we call an access control branch. Access control branches are replicated on all

participants, which can then use them to compute the latest state of the trust graph and

modify permissions accordingly.

Model 6

3.2 Initialization

The model has a certain number of clients. It contains a trust graph, with one replica for

each client. In their own replica, each client stores the state of the trust graph that they

are aware of. This is from the perspective of the server owned by this client. They store

who they trusts and who all other clients trust. Each client can always only modify who is

trusted by them in their own replica. All this information is stored in the variable TG.

In TLA+, this is modelled as nested mappings from client to client, ending in a tuple of

a boolean and a natural number representing respectively whether there is trust and how

many times the trust relationship was modified. At the first level, the mapping uses a client

r as a key and specifies the local replica for r, with the corresponding value representing the

current state of the replicated trust graph for r. At the second level of nesting, the mapping

uses a client c1 as key and specifies whose trust relationship we are currently looking at. At

the third level of nesting, the mapping uses a client c2 and specifies the target of the trust

relationship.

This is followed by a tuple that contains a boolean and a natural number. The boolean

specifies if that third client is currently trusted by the second client or not. The natural num-

ber specifies how many operations have been performed on this entry. For each AddTrust or

RemoveTrust operation it is increased by one. This enables us to tell which entry is newer,

since only c1 can modify this entry and we assume all operations of c1 are sequential. For

our initialization, we set all booleans to FALSE and all our natural numbers to 0. We create

this mapping for all clients that exist in the model. This can be seen in Figure 3.1. Here

x ∈ Set 7→ Elements means all x in Set map to all Elements [15, pp. 301–304]. Therefore

there is a mapping from every x in Set to every Element.

module prerecieveLogic
extends Naturals
variables TG
constants Clients

Helper

Max [x ∈ Nat , y ∈ Nat]
∆
= if x < y then y else x

Max3[x ∈ Nat ,
y ∈ Nat ,
z ∈ Nat]

∆
= Max [x , Max [y , z]]

Add3[x ∈ Nat ,
y ∈ Nat ,
z ∈ Nat]

∆
= x + y + z

Fold(Fn3)
∆
=

let Helper [C ∈ subset Clients,
C2 ∈ subset Clients]

∆
=

if C = {} ∨ C2 = {} then 0
else let c

∆
= choose c ∈ C : true

c2
∆
= choose c2 ∈ C2 : true

in Fn3[Helper [C \ {c}, C2],
Helper [C , C2 \ {c2}],
TG [c][c].trusts[c2][2]]

in Helper [Clients, Clients]

Initialization

We assume one trust graph per client, represented by r

Init
∆
= TG = [r ∈ Clients 7→

[c1 ∈ Clients 7→
[trusts 7→
[c2 ∈ Clients 7→
⟨false, 0⟩]]]]

vars
∆
= ⟨TG⟩

Calculations from Trustgraph

Can client c pull/push from the other client r ?

CanPull(c, r)
∆
=

∧ c ∈ Clients
∧ r ∈ Clients
∧ ∨ c = r

∨ TG [r][r].trusts[c][1]

1

Figure 3.1: Initialization of the TLA+ model

3.3 User Operations as TLA+ Actions

A client can only update whom they trust from their own replica first. They can add or

remove their trust to another client or they can merge the replica of another client onto their

own replica. This corresponds to three TLA+ actions in the model:

• AddTrust - A client adds trust from itself to another client.

• RemoveTrust - A client removes trust from itself to another client.

• Merge - A client merges the trust graph of another client onto their own replica.

In TLA+ there are two things that an action has. One of which is the precondition

which enables the action and the other is the effect of the action. An Action is applied if all

statements it contains are true [15, pp. 312–314].

Model 7

You can combine these statements in TLA+ by using a bullet point in front of each

statement. We are using ∧ (conjunction) but ∨ (disjunction) is also allowed. The logical

operator used for the bullet points decides how the statements are logically combined [15,

p. 293].

These actions provide all the functionality needed to model the system. Merging enables

the propagation of trust. This is important because if a client c1, who already has push-pull

capabilities, trusts any other client c2, then c2 should obtain pull capabilities. In a real world

environment where there are several servers, the updates can also be propagated transitively

without requiring that the client that added or removed trust to be directly involved.

3.3.1 Adding and Removing Trust

There are only two ways of modifying trust relationships, either by adding or removing

trust. We only explain the action for adding trust in detail since the action for removing

trust works symmetrically.

The action AddTrust in Figure 3.2 chooses two arbitrary clients which is done with

∃ c1, c2 ∈ Clients [15, pp. 314–316]. Here c1 does not trust c2 is the precondition which

is the first bullet point. This is simply done by checking in the replica of c1 if the boolean

value of the tuple that encodes the relationship from c1 to c2 is FALSE.

The second bullet point specifies the effect of the action. Here TG′ signifies what the

trust graph should be after the action has been applied. We specify that it is supposed to

be the same except for the tuple that encodes the relationship from c1 to c2 in the replica

of c1. The keywords TG EXCEPT ! allow us to specify which entry in TG is supposed to be

different while leaving everything else untouched [15, pp. 305–306]. We then set the boolean

value of the tuple to TRUE and increment the counter by 1.

∨ ∃ c2 ∈ Clients :
∧ TG [r][c2].trusts[c][1]
∧ TG [r][r].trusts[c2][1]

CanPush(c, r)
∆
=

∧ c ∈ Clients
∧ r ∈ Clients
∧ ∨ c = r

∨ TG [r][r].trusts[c][1]

Actions

Each client c1 can only modify their trust relationship to other clients in their own section of

the trust graph.

AddTrust
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1][c1].trusts[c2][1] = false
∧ TG ′ = [TG except ! [c1][c1].trusts[c2] = ⟨true, TG [c1][c1].trusts[c2][2] + 1⟩]

RemoveTrust
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1][c1].trusts[c2][1] = true
∧ TG ′ = [TG except ! [c1][c1].trusts[c2] = ⟨false, TG [c1][c1].trusts[c2][2] + 1⟩]

Merge
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1] ̸= TG [c2]
∧ TG ′ = [TG except ! [c1] =

[c3 ∈ Clients 7→
[trusts 7→ [c4 ∈ Clients 7→
if TG [c1][c3].trusts[c4][2] < TG [c2][c3].trusts[c4][2]

then TG [c2][c3].trusts[c4]
else TG [c1][c3].trusts[c4]]]]]

Next
∆
=

∨ Merge
∨ RemoveTrust
∨ AddTrust

Invariants

TypeOK
∆
= TG ∈ [Clients → [Clients → [trusts : [Clients → boolean × Nat]]]]

LocalTrustFirst
∆
= ∀ c1, c2, c3 ∈ Clients :

∨ TG [c1][c1].trusts[c3] = TG [c2][c1].trusts[c3]
∨ TG [c1][c1].trusts[c3][2] > TG [c2][c1].trusts[c3][2]

Temporal Formulas

Spec
∆
= Init ∧2[Next]vars

2

Figure 3.2: Action AddTrust from the TLA+ specification

The action RemoveTrust works the exact same way except that c1 has to already trust

c2 and it sets the trust value to FALSE.

3.3.2 Merging

Similar to AddTrust or RemoveTrust, Merge in Figure 3.3 starts by choosing two arbitrary

clients c1 and c2. The replica of c1 cannot be the same as the replica of c2 for this action

to be enabled. It then updates the replica of c1 with anything in the replica of c2 that is

newer. This is because we are again using the notation x ∈ Set 7→ . . . therefore doing this

for all elements in the set. Which is newer is indicated by the number in each entry. If it is

higher the entry is newer. This is done by the IF . . . THEN . . . ELSE statement that works

like in any other programming language [15, p. 298].

3.4 Helper Functions

One helper function that was created is CanPull(c, r) in Figure 3.4 which determines if

client c can pull from the replica of client r given the state of the trust graph currently

Model 8

∨ ∃ c2 ∈ Clients :
∧ TG [r][c2].trusts[c][1]
∧ TG [r][r].trusts[c2][1]

CanPush(c, r)
∆
=

∧ c ∈ Clients
∧ r ∈ Clients
∧ ∨ c = r

∨ TG [r][r].trusts[c][1]

Actions

Each client c1 can only modify their trust relationship to other clients in their own section of

the trust graph.

AddTrust
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1][c1].trusts[c2][1] = false
∧ TG ′ = [TG except ! [c1][c1].trusts[c2] = ⟨true, TG [c1][c1].trusts[c2][2] + 1⟩]

RemoveTrust
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1][c1].trusts[c2][1] = true
∧ TG ′ = [TG except ! [c1][c1].trusts[c2] = ⟨false, TG [c1][c1].trusts[c2][2] + 1⟩]

Merge
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1] ̸= TG [c2]
∧ TG ′ = [TG except ! [c1] =

[c3 ∈ Clients 7→
[trusts 7→ [c4 ∈ Clients 7→
if TG [c1][c3].trusts[c4][2] < TG [c2][c3].trusts[c4][2]

then TG [c2][c3].trusts[c4]
else TG [c1][c3].trusts[c4]]]]]

Next
∆
=

∨ Merge
∨ RemoveTrust
∨ AddTrust

Invariants

TypeOK
∆
= TG ∈ [Clients → [Clients → [trusts : [Clients → boolean × Nat]]]]

LocalTrustFirst
∆
= ∀ c1, c2, c3 ∈ Clients :

∨ TG [c1][c1].trusts[c3] = TG [c2][c1].trusts[c3]
∨ TG [c1][c1].trusts[c3][2] > TG [c2][c1].trusts[c3][2]

Temporal Formulas

Spec
∆
= Init ∧2[Next]vars

2

Figure 3.3: Action Merge from the TLA+ specification

replicated by r. This is the case if either c = r, r directly trusts c or if there exists a client

c2 that trusts c and is trusted by r.

module prerecieveLogic
extends Naturals
variables TG
constants Clients

Helper

Max [x ∈ Nat , y ∈ Nat]
∆
= if x < y then y else x

Max3[x ∈ Nat ,
y ∈ Nat ,
z ∈ Nat]

∆
= Max [x , Max [y , z]]

Add3[x ∈ Nat ,
y ∈ Nat ,
z ∈ Nat]

∆
= x + y + z

Fold(Fn3)
∆
=

let Helper [C ∈ subset Clients,
C2 ∈ subset Clients]

∆
=

if C = {} ∨ C2 = {} then 0
else let c

∆
= choose c ∈ C : true

c2
∆
= choose c2 ∈ C2 : true

in Fn3[Helper [C \ {c}, C2],
Helper [C , C2 \ {c2}],
TG [c][c].trusts[c2][2]]

in Helper [Clients, Clients]

Initialization

We assume one trust graph per client, represented by r

Init
∆
= TG = [r ∈ Clients 7→

[c1 ∈ Clients 7→
[trusts 7→
[c2 ∈ Clients 7→
⟨false, 0⟩]]]]

vars
∆
= ⟨TG⟩

Calculations from Trustgraph

Can client c pull/push from the other client r ?

CanPull(c, r)
∆
=

∧ c ∈ Clients
∧ r ∈ Clients
∧ ∨ c = r

∨ TG [r][r].trusts[c][1]

1

∨ ∃ c2 ∈ Clients :
∧ TG [r][c2].trusts[c][1]
∧ TG [r][r].trusts[c2][1]

CanPush(c, r)
∆
=

∧ c ∈ Clients
∧ r ∈ Clients
∧ ∨ c = r

∨ TG [r][r].trusts[c][1]

Actions

Each client c1 can only modify their trust relationship to other clients in their own section of

the trust graph.

AddTrust
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1][c1].trusts[c2][1] = false
∧ TG ′ = [TG except ! [c1][c1].trusts[c2] = ⟨true, TG [c1][c1].trusts[c2][2] + 1⟩]

RemoveTrust
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1][c1].trusts[c2][1] = true
∧ TG ′ = [TG except ! [c1][c1].trusts[c2] = ⟨false, TG [c1][c1].trusts[c2][2] + 1⟩]

Merge
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1] ̸= TG [c2]
∧ TG ′ = [TG except ! [c1] =

[c3 ∈ Clients 7→
[trusts 7→ [c4 ∈ Clients 7→
if TG [c1][c3].trusts[c4][2] < TG [c2][c3].trusts[c4][2]

then TG [c2][c3].trusts[c4]
else TG [c1][c3].trusts[c4]]]]]

Next
∆
=

∨ Merge
∨ RemoveTrust
∨ AddTrust

Invariants

TypeOK
∆
= TG ∈ [Clients → [Clients → [trusts : [Clients → boolean × Nat]]]]

LocalTrustFirst
∆
= ∀ c1, c2, c3 ∈ Clients :

∨ TG [c1][c1].trusts[c3] = TG [c2][c1].trusts[c3]
∨ TG [c1][c1].trusts[c3][2] > TG [c2][c1].trusts[c3][2]

Temporal Formulas

Spec
∆
= Init ∧2[Next]vars

2

Figure 3.4: Helper Function CanPull(c, r) from the TLA+ specification

There is also a helper function CanPush(c, r) but it is a bit simpler since only the owner

of a replica and the people directly trusted by him can push to a replica. It is not used in

the model but it is included for completeness. Therefore we will not discuss it further.

3.5 Invariants

3.5.1 Typing

Since in TLA+ variables are untyped we need to specify our own invariant that specifies the

set of values that are allowed for each variable [15, p. 67]. It is very similar as what was

already done in the initialization except this time we are not assigning any values but we are

checking if TG is an element of the set it may be in. Namely being a mapping from Clients

to Clients to the label trusts to Clients to a tuple of a boolean and a natural number [15,

pp. 306–307]. This is done in Figure 3.5. → signifies that it is that set of functions with

these types. For example [S → T] is the set of functions f with f(x) ∈ T for x ∈ S [15, pp.

301–304].

∨ ∃ c2 ∈ Clients :
∧ TG [r][c2].trusts[c][1]
∧ TG [r][r].trusts[c2][1]

CanPush(c, r)
∆
=

∧ c ∈ Clients
∧ r ∈ Clients
∧ ∨ c = r

∨ TG [r][r].trusts[c][1]

Actions

Each client c1 can only modify their trust relationship to other clients in their own section of

the trust graph.

AddTrust
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1][c1].trusts[c2][1] = false
∧ TG ′ = [TG except ! [c1][c1].trusts[c2] = ⟨true, TG [c1][c1].trusts[c2][2] + 1⟩]

RemoveTrust
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1][c1].trusts[c2][1] = true
∧ TG ′ = [TG except ! [c1][c1].trusts[c2] = ⟨false, TG [c1][c1].trusts[c2][2] + 1⟩]

Merge
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1] ̸= TG [c2]
∧ TG ′ = [TG except ! [c1] =

[c3 ∈ Clients 7→
[trusts 7→ [c4 ∈ Clients 7→
if TG [c1][c3].trusts[c4][2] < TG [c2][c3].trusts[c4][2]

then TG [c2][c3].trusts[c4]
else TG [c1][c3].trusts[c4]]]]]

Next
∆
=

∨ Merge
∨ RemoveTrust
∨ AddTrust

Invariants

TypeOK
∆
= TG ∈ [Clients → [Clients → [trusts : [Clients → boolean × Nat]]]]

LocalTrustFirst
∆
= ∀ c1, c2, c3 ∈ Clients :

∨ TG [c1][c1].trusts[c3] = TG [c2][c1].trusts[c3]
∨ TG [c1][c1].trusts[c3][2] > TG [c2][c1].trusts[c3][2]

Temporal Formulas

Spec
∆
= Init ∧2[Next]vars

2

Figure 3.5: Invariant TypeOK from the TLA+ specification

3.5.2 Local Modifications First

We also have another invariant in Figure 3.6 to make sure that a client only modifies the trust

values in his own replica first before they are propagated to replicas of other clients. This is

done by comparing the iteration numbers between two replicas. The entry either needs to

be completely the same, which means the other replica is up-to-date, or the revision number

Model 9

of the remote replica should be lower, which means it has not replicated the latest state

yet. Here we are now using bullet-pointed ∨ statements in contrast to the bullet-pointed ∧
statements from before. This has always to be true for any three arbitrary clients which in

TLA+ can be written with the ∀ operator [15, pp. 293–294].

∨ ∃ c2 ∈ Clients :
∧ TG [r][c2].trusts[c][1]
∧ TG [r][r].trusts[c2][1]

CanPush(c, r)
∆
=

∧ c ∈ Clients
∧ r ∈ Clients
∧ ∨ c = r

∨ TG [r][r].trusts[c][1]

Actions

Each client c1 can only modify their trust relationship to other clients in their own section of

the trust graph.

AddTrust
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1][c1].trusts[c2][1] = false
∧ TG ′ = [TG except ! [c1][c1].trusts[c2] = ⟨true, TG [c1][c1].trusts[c2][2] + 1⟩]

RemoveTrust
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1][c1].trusts[c2][1] = true
∧ TG ′ = [TG except ! [c1][c1].trusts[c2] = ⟨false, TG [c1][c1].trusts[c2][2] + 1⟩]

Merge
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1] ̸= TG [c2]
∧ TG ′ = [TG except ! [c1] =

[c3 ∈ Clients 7→
[trusts 7→ [c4 ∈ Clients 7→
if TG [c1][c3].trusts[c4][2] < TG [c2][c3].trusts[c4][2]

then TG [c2][c3].trusts[c4]
else TG [c1][c3].trusts[c4]]]]]

Next
∆
=

∨ Merge
∨ RemoveTrust
∨ AddTrust

Invariants

TypeOK
∆
= TG ∈ [Clients → [Clients → [trusts : [Clients → boolean × Nat]]]]

LocalTrustFirst
∆
= ∀ c1, c2, c3 ∈ Clients :

∨ TG [c1][c1].trusts[c3] = TG [c2][c1].trusts[c3]
∨ TG [c1][c1].trusts[c3][2] > TG [c2][c1].trusts[c3][2]

Temporal Formulas

Spec
∆
= Init ∧2[Next]vars

2

Figure 3.6: Invariant LocalTrustF irst from the TLA+ specification

3.6 Liveness

We specify some liveness properties for eventual consistency. The first formula in Figure 3.7

states that for two arbitrary clients c1 and c2, and for every client c3, if c1 locally trusts

c2 and c3 locally trusts c1, then it follows that c2 can pull from c3 which in TLA+ can be

expressed with the implication (⇒) operator [15, pp. 293–294].

This may not always be the case. If the change in c1’s replica has not been propagated

to c3 yet, the first part may be true but not the second part. Because of this we specify

that it has to be eventually true and can infinitely often switch between being false or true.

This can be expressed by the symbols □ [15, pp. 314–316].

Fairness
∆
= WFvars(Merge)

FairSpec
∆
= Spec ∧ Fairness

Liveness

TransCanPull
∆
= ∃ c1, c2 ∈ Clients :

∀ c3 ∈ Clients :
(TG [c3][c3].trusts[c1][1] ∧ TG [c1][c1].trusts[c2][1])
⇒ CanPull(c2, c3)

TransCanNotPull
∆
= ∃ c2 ∈ Clients :

∀ c1 ∈ Clients :
(∧ ¬TG [c1][c1].trusts[c2][1]
∧ c1 ̸= c2
∧ ∀ c3 ∈ Clients :

∨ ¬TG [c1][c1].trusts[c3][1]
∨ ¬TG [c3][c3].trusts[c2][1])

⇒ ¬CanPull(c2, c1)

InfOftenTransCanPull
∆
= 23TransCanPull

InfOftenTransCanNotPull
∆
= 23TransCanNotPull

\ * Modification History

\ * Last modified Wed Jun 04 14:12:27 CEST 2025 by pius

\ * Last modified Fri Apr 11 16:25:52 CEST 2025 by lavoie

\ * Created Mon Apr 14 10:38:55 CEST 2025 by pius

3

Fairness
∆
= WFvars(Merge)

FairSpec
∆
= Spec ∧ Fairness

Liveness

TransCanPull
∆
= ∃ c1, c2 ∈ Clients :

∀ c3 ∈ Clients :
(TG [c3][c3].trusts[c1][1] ∧ TG [c1][c1].trusts[c2][1])
⇒ CanPull(c2, c3)

TransCanNotPull
∆
= ∃ c2 ∈ Clients :

∀ c1 ∈ Clients :
(∧ ¬TG [c1][c1].trusts[c2][1]
∧ c1 ̸= c2
∧ ∀ c3 ∈ Clients :

∨ ¬TG [c1][c1].trusts[c3][1]
∨ ¬TG [c3][c3].trusts[c2][1])

⇒ ¬CanPull(c2, c1)

InfOftenTransCanPull
∆
= 23TransCanPull

InfOftenTransCanNotPull
∆
= 23TransCanNotPull

\ * Modification History

\ * Last modified Wed Jun 04 14:12:27 CEST 2025 by pius

\ * Last modified Fri Apr 11 16:25:52 CEST 2025 by lavoie

\ * Created Mon Apr 14 10:38:55 CEST 2025 by pius

3

Figure 3.7: Liveness property InfOftenTransCanPull from the TLA+ specification

There is also a second liveness property in Figure 3.8 that specifies the same concept

but when trust is removed instead. Here we need to specify this a bit differently. We start

by saying that there exists a client c2 and for all clients c1 we specify that c1 may not

trust c2 locally and they may not be the same. Then we specify that there may not be

any transitive trust through any client c3 locally on c1’s and c3’s replica respectively. If all

these conditions hold we imply that c2 can not pull from c1. The inverse of a statement can

simply be expressed by using the ¬ operator in front of the statement [15, pp. 293–294].

We then specify that it can switch infinitely often between being false or true because of

the same reasons as before.

Fairness
∆
= WFvars(Merge)

FairSpec
∆
= Spec ∧ Fairness

Liveness

TransCanPull
∆
= ∃ c1, c2 ∈ Clients :

∀ c3 ∈ Clients :
(TG [c3][c3].trusts[c1][1] ∧ TG [c1][c1].trusts[c2][1])
⇒ CanPull(c2, c3)

TransCanNotPull
∆
= ∃ c2 ∈ Clients :

∀ c1 ∈ Clients :
(∧ ¬TG [c1][c1].trusts[c2][1]
∧ c1 ̸= c2
∧ ∀ c3 ∈ Clients :

∨ ¬TG [c1][c1].trusts[c3][1]
∨ ¬TG [c3][c3].trusts[c2][1])

⇒ ¬CanPull(c2, c1)

InfOftenTransCanPull
∆
= 23TransCanPull

InfOftenTransCanNotPull
∆
= 23TransCanNotPull

\ * Modification History

\ * Last modified Wed Jun 04 14:12:27 CEST 2025 by pius

\ * Last modified Fri Apr 11 16:25:52 CEST 2025 by lavoie

\ * Created Mon Apr 14 10:38:55 CEST 2025 by pius

3

Fairness
∆
= WFvars(Merge)

FairSpec
∆
= Spec ∧ Fairness

Liveness

TransCanPull
∆
= ∃ c1, c2 ∈ Clients :

∀ c3 ∈ Clients :
(TG [c3][c3].trusts[c1][1] ∧ TG [c1][c1].trusts[c2][1])
⇒ CanPull(c2, c3)

TransCanNotPull
∆
= ∃ c2 ∈ Clients :

∀ c1 ∈ Clients :
(∧ ¬TG [c1][c1].trusts[c2][1]
∧ c1 ̸= c2
∧ ∀ c3 ∈ Clients :

∨ ¬TG [c1][c1].trusts[c3][1]
∨ ¬TG [c3][c3].trusts[c2][1])

⇒ ¬CanPull(c2, c1)

InfOftenTransCanPull
∆
= 23TransCanPull

InfOftenTransCanNotPull
∆
= 23TransCanNotPull

\ * Modification History

\ * Last modified Wed Jun 04 14:12:27 CEST 2025 by pius

\ * Last modified Fri Apr 11 16:25:52 CEST 2025 by lavoie

\ * Created Mon Apr 14 10:38:55 CEST 2025 by pius

3

Figure 3.8: Liveness property InfOftenTransNotCanPull from the TLA+ specification

4
Implementation

This chapter is about enforcing the security properties that were implied in the model. This

is done by using self-certification and a pipeline of verification steps to ensure that only

valid operations may modify the state of the repository. These properties are: 1) the owner

always has capabilities; 2) only those who can push or pull on the model may do so in the

implementation; and 3) each participant can only modify their own trust relations.

It is important to note that the owner of a replica needs to be trusted since he has full

control over the machine and could modify all trust relations. This is fine since this software

aims to let the owner delegate work and not make him relinquish power over his machine.

4.1 User Perspective

Adding or removing trust in this software is encoded in Git commits. Each user has their own

branch on which they make commits that either encode adding or removing trust. We will

call these their personal access control branches. Each branch’s name follows the structure

<root-hash> <base-32-encoded-pub-key-of-user>.

The root hash is the Git hash of a signed Git commit that contains all software needed

to run the access control software and we will refer to it as the root commit. This allows

us to identify which version of the software is being used and if this branch even belongs to

this access control software.

The base 32 encoded pubkey allows us to tell exactly to whom this branch belongs to.

It is base 32 encoded to avoid any characters that could be be invalid or be interpreted by

Git or the operating system as a path separator, such as a backslash.

4.1.1 User Operations

A user of the system can simply interact with the system by interacting with the gac.py [16]

script that will be on their personal access control branch as well as on the branch called

<root-hash> gac which is the branch that contains all software used for the access control.

How to setup a repository to work with the software will be discussed later in subsection 4.5.3.

If a user wants to add trust for a person he can do so simply by executing the following

command:

Implementation 11

./gac.py add_trust <trustee-pub-key>

This corresponds directly to the AddTrust action discussed in the model earlier. The

following command corresponds to the RemoveTrust action:

./gac.py remove_trust <trustee-pub-key>

The Merge action corresponds to pushing the changes on the local machine to the server

that hosts the repository. This will merge the pushed replica with the replica of the owner

of the server. If the pushed replica belongs to the owner of the server it updates the server

to the current state of the replica.

4.2 Commit Structure

Each commit on an access control branch encodes three things. The commit message is either

add trust or remove trust which encodes the operation. A git commit also has fields for

the name of the committer and their email. These are rarely used so in this software we

will use them to encode some other things. The field for the committer name is used to

encode the public key of the person for whom we want to add or remove trust. The field for

the committer email contains the base 32 encoded pubkey of the person executing this trust

operation. We are using the base 32 encoded pubkey here for consistency reasons.

But in Git anybody can create a commit on any branch they want. This is why we are

using self certifying commits. By signing the commits with the same key that is encoded in

the branch name and the committer email we can verify that the user that made a commit

on this branch is the user this branch belongs to.

For a branch to be a valid access control branch it also needs to have the root commit

as the root of the branch. By checking for this we can again verify if this branch belongs to

the access control software and the current version of the software.

To enable us to have a clear understanding of what trust operations happened, and in

which order, we require each access control branch to be a linked list (sequence) of commits.

This means there can be no merge commits.

We do not need to be able to tell when an operation happened relative to an other

access control branch because we are only interested in who is trusted by each user at the

current state. However the order of trust operations that each user executed are important

for us. Since the commits that encode these trust operations can be created without any

prerequisites it is entirely possible for a user to first remove trust for a user that he did not

trust before and then add it again. If these operations are in the reversed order the outcome

would be the opposite of what is supposed to happen. Therefore it is imperative for us to

have a linear timeline that cannot be altered and we need to disallow deleting these branches

or commits on these branches.

4.3 Architecture

There are 3 main parts to the architecture of this software, which are illustrated in Figure 4.1.

The first is the script gac.py [16] which is mainly there to make interacting with the soft-

ware easier for the user. All things done by this part of the software could also be done by the

user by typing the corresponding Git commands and creating certain files. It would however

Implementation 12

make interacting with software rather clunky. The second part is comprised of what we write

into the authorized keys file and the two scripts git pull.sh and git push pull.sh [16].

This part is responsible for limiting the capabilities of users added by the system. The third

part is the git hook pre-receive.py [16] that is responsible for most of the logic of the

software.

If a user pushes commits to a server there are usually three checks if this is allowed to

happen. First, if they connect using SSH and their public key is not in the authorized keys

file, the push will be rejected. Second, the command sent to the server to be executed

is checked by either git pull.sh or git push pull.sh [16] and may be rejected if it is

not allowed. There is one exception to this rule and that is if the owner of the server

pushes any changes: in this case, it will skip these scripts since the owner is given full SSH

access maintain the server anyway. Third, the pre-receive.py [16] Git hook will check the

cryptographic properties of all incoming commits and reject them if they are violated. If

the commits pass all these checks the changes they make to the trust graph on the server

are applied.

gac.py authorized keys

git pull.sh

git push pull.sh

pre-receive

X

X

X

X

✓

✓

✓

✓

SSH

Figure 4.1: Architecture of the Git access control software

4.4 Code

In this section, we explain in more detail how each component of the architecture is imple-

mented.

4.4.1 Restricting SSH Access with the Authorized Key Options

It is possible to restrict users that access a server using SSH with a public key in a few

different ways. It is possible to disable many features of SSH such as port forwarding or

X11 forwarding by adding certain arguments to the entry in the authorized keys file [6,

pp. 113–116]. In our case this is:

no-agent-forwarding,no-port-forwarding,no-pty,no-user-rc,no-X11-forwarding

These arguments disable all other features of SSH that a user could use to make sure

they only execute the commands that they are supposed to. It is also possible to specify a

Implementation 13

command to be executed when the user starts an SSH session by simply adding this [17] in

front of the other arguments:

command="<command-to-be-executed>"

This allows us to restrict any user further. We either execute the git pull.sh or the

git push pull.sh script [16]. These scripts get passed the original SSH command and

then check if it matches a certain pattern. This is possible because git pull invokes

git-upload-pack and git push invokes git-receive-pack for a specific repository on

the server side. The patterns get modified when a server is created so that they only work

for one repository. If the pattern matches we execute the command in a git shell. This shell

only allows git commands which further improves security.

Unfortunately one can only run one repository per user per server at a time. This is due

to how SSH reads the public keys in the authorized keys file. It always applies the first

key that matches and if that is not the entry that belongs to the repository a user wants to

access the access control system will deny access. This is a limitation of SSH and making

it work with multiple repositories is not part of this thesis. If one wants to run multiple

repositories one can either run each repository on a different user or run them in Docker

containers.

4.4.2 Git Hook

The pre-receive git hook is where all the logic of this software resides and it can be found

on Github and is called pre-receive.py [16]. This is the hook that gets invoked when a

repository receives new commit(s) through a user invoking git push on their machine [9].

The access control software will be run on a server which only receives new commits through

push operations made by clients. This means we only need to process commits received this

way.

This script receives the hash of the old revision, the hash of the new revision and the

reference name on standard input. Firstly it loads the current trust graph from disk. It

then checks if it is an access control branch by looking for the root commit. If it does not

find it, it will just continue with the next branch that was pushed to the server. It then

checks if the branch is named correctly and if it is not the branch called <root-hash> gac

which may not be updated since it contains the access control software. It then checks for

deletion, force pushes and merges which are all things we do not allow. If these checks all

pass it starts processing commits one at a time. It checks the cryptographic properties of

each commit on an access control branch and correctly modifies the trust graph.

After processing all commits on all branches that were pushed to the server, the script

saves the trust graph to the disk, resolves the trust graph into user-specific privileges and

modifies the authorized keys file accordingly.

The trust graph is saved as two nested lists. The outer list contains an entry for each

user and an inner list of the users trusted by this user. Parsing the trust graph to privileges

is done by adding all keys trusted by the owner to the list of users that may push and pull.

After this it goes through all keys of users on that list and adds the keys that are not the

owner or in that list to a list of people that may only pull.

Implementation 14

4.4.3 Installation

The software is in a commit and we use this commit to identify branches of the software. The

cleanest way to install this software is therefore to insert this commit into a Git repository

and check it out. This is what our setup script gac.sh [16] does. It contains a base 64

encoded bundle which contains this single commit. This commit is inserted into a new

branch called <root-hash> gac.

The commit hash of this commit is essential for the software to work since we need to

check for this root commit and the easiest way to do this is to check the commit hash. This

creates a problem because the hash of the root commit has to be in the input for the hash

function that creates this hash. Therefore the hash depends on itself. This means we need

to patch the commit hash into the software while installing it since there is no way to create

a commit that contains its own hash.

After patching the commit hash into the software gac.sh calls gac.py [16] with the

operation create server and the first argument it was given. This argument should be the

public key of the owner of the repository. gac.py now changes a few lines in git-pull.sh

and git-push-pull.sh [16] so that they only allow access to the specific repository that is

currently being setup and log their output to a file in the .git folder of this repository. After

all these modifications are done all files get moved to the places they need be. git-pull.sh

and git-push-pull.sh get moved to the .git folder and pre-receive.py gets moved to

the .git/hooks folder as well as renamed to pre-receive. Having made all the changes

necessary the script now commits the changes to the <root-hash> gac branch and the server

is ready.

4.5 Deployment

This section describes how to use the code that was developed in this thesis to host a Git

repository with access control. It will provide two different ways to run it. One which allows

a developer to easily make modifications on his development machine, which we call the host

machine, and one in a Docker container to simplify deployments on remote servers.

4.5.1 Deploying the Code on the Host Machine

Deploying the code on the host machine itself is the simplest way to use it. One needs to

have a non bare initialized Git repository and just needs to copy the gac.sh [16] file into

the root folder of the repository. Then one needs to run it with the following command,

replacing <ed25519-pub-key> with the ED25519 public key that one wants to be the owner

of the repository:

./gac.sh <ed25519-pub-key>

Make sure that this public key is also in the authorized keys file with full SSH access to

the server. This can simply be done by adding the following line to your authorized keys

file:

ssh-ed25519 <ed25519-pub-key> <optional-identifier>

The identifier is completely optional and can just be removed.

Implementation 15

4.5.2 Deploying the Code in Docker

Deploying the code in Docker is a clean and simple solution to host a repository but provides

a few challenges. Since the code is not being run on the host machine itself but in a container

there still needs to be a way to access the host machine.

One can not expose port 22 of the container to the outside since this port is needed to

access the host machine. It is also not possible for the host machine to tell which hostname

was used to access it since there is no protocol extension like Server Name Identification

(SNI) in HTTPS for SSH as discussed in a Stack Overflow post [18]. Otherwise it would

be possible to tell by the hostname that was used if a user wanted to access the container

running the Git repository or if he wanted to use SSH to access the host machine. This is

a problem because it would be the cleanest solution to access the repository. We can get

around this by exposing a different port to the outside and then mapping this port to port

22 on the container. This setup keeps the host machine accessible and allows access to the

Git repository inside the container. However, since the SSH port is non-standard, the port

must be explicitly specified when accessing the repository.

If one wants to run the container Docker must be installed and one needs to edit the

last line in the Dockerfile to use the ED25519 public key that should be the owner of the

repository. Currently it contains an example key. It should look like this:

ENTRYPOINT ["/entrypoint.sh", "<your-key>"]

The example Dockerfile that is included maps port 22 of the container to port 2222

of the host machine. One can build the docker image by executing the following com-

mand in the directory that contains the Dockerfile, docker-compose.yml, gac.sh and

entrypoint.sh [16] files:

docker-compose build

One can then run the container in the background by executing the following command

in the same directory:

docker-compose up -d

To stop the container one can execute the following command in the same directory:

docker-compose down

If one wants to run multiple containers one can do so by exposing a different port for each

container. This would only require changing the port mapping in the docker-compose.yml

file. In the example docker-compose.yml port 22 on the container is mapped to port 2222

on the the host machine. One can change this to any port that is not already in use. One will

also need to change the names of the volumes in the docker-compose.yml file to something

that is unique for each container. Otherwise the container will just contain the same data

as the other container.

4.5.3 Accessing the Repository

To access the repository one can use the following command, replacing the placeholders as

needed:

git clone ssh://<user>@<host >:<port><path-to-repository >.git

Implementation 16

If one is running the code in Docker with the example Dockerfile the command will look

like this and one only needs to replace <host> with the hostname or IP address of the host

machine:

git clone ssh://git@<host>:2222/home/git/repo/.git

This command will clone the repository to the machine it is being executed on. To start

using the access control system one needs to set it up first. This can be done by executing a

single command in the root directory of the repository right after cloning it. This command

will setup the access control system on the local machine. One will need to provide the path

to one’s own ED25519 public key. This key must be the same that was used to create the

repository on the host machine if one is the owner of the repository. Otherwise it can just

be the ED25519 public key that one wants to use with this system. The command is as

follows:

./gac.py create_repo <path-to-your-ed25519-public-key>

Depending on how the host machine is usually accessed one might need to setup the

SSH config file to use the correct key. This can be done by adding the following lines to the

~/.ssh/config file and replacing the placeholders with the correct values:

Host <hostname>

HostName <hostname>

Port <port>

User <user-on-server>

IdentityFile <path-to-your-ed25519-public-key>

IdentitiesOnly yes

The hostname is the hostname or IP address of the host machine. If the software is

running in Docker with the example Dockerfile the port is 2222. If one is running the

software on the host machine the port is 22. The user is the user on the server which is

hosting the repository. If one is hosting the repository on Docker it is Git. The path to

ones ED25519 public key is the path to the public key that one wants to use with the access

control software. This setup will allow one to access the repository without having to specify

the key every time.

5
Evaluation

5.1 Correctness of the Specification

To guarantee the correctness of a TLA+ model it can be checked by the TLC model checker.

5.1.1 Limiting the State Space

If we just let the TLC model checker run on this model it will never finish since the amount

of trust operations is not limited in any way. To have the model checker finish we need to

limit the amount of AddTrust and RemoveTrust operations possible.

For this we have defined the functions Max3 which computes the maximum of three

natural numbers and Add3 which adds 3 natural numbers together that are rather simple

and will not be discussed further here.

We also have the function Fold(Fn3) in Figure 5.1 that takes a function that takes three

arguments as an argument. It then calculates the given function for all the counters that

signify how often either AddTrust or RemoveTrust have been executed on a tuple.

The function defines a helper function calledHelper[C ∈ SUBSET Clients, C2 ∈ SUBSET

Clients] using the LET keyword [15, p. 299]. Here x ∈ SUBSET Set means that x is a sub-

set of Set [15, pp. 299–301]. This function returns 0 if either C or C2 are the empty set.

Otherwise it chooses a c in C and c2 in C2 using the CHOOSE keyword [15, pp. 294–295].

This keyword is needed because the recursion needs to apply to a smaller set to terminate.

It then calls the given function Fn3 with two arguments being the helper function again.

Once the helper function is called with C without c and C2 and once with C and C2 without

c2. The third argument being the natural number that signifies how often the trust relation

from c to c2 has been modified in the replica of c. This has to be the highest number for

this relationship because the relationship has to be modified in the local replica first before

it can be propagated to other replicas.

In the end Fold(Fn3) calls the helper function with the arguments Clients and Clients.

This means that if we call this function with the argument Add3 it returns the number of

AddTrust or RemoveTrust actions that have been performed. It however will not count

the number of Merge actions.

Evaluation 18

This allows us to limit how many of those actions can be performed. By limiting the

number of AddTrust and RemoveTrust operations, the only other operation that can be

performed is a Merge operation, which eventually results in all replicas having the same

trust graph and no further state changes. This way, this results in a finite state space for

the model checker to verify.

module prerecieveLogic
extends Naturals
variables TG
constants Clients

Helper

Max [x ∈ Nat , y ∈ Nat]
∆
= if x < y then y else x

Max3[x ∈ Nat ,
y ∈ Nat ,
z ∈ Nat]

∆
= Max [x , Max [y , z]]

Add3[x ∈ Nat ,
y ∈ Nat ,
z ∈ Nat]

∆
= x + y + z

Fold(Fn3)
∆
=

let Helper [C ∈ subset Clients,
C2 ∈ subset Clients]

∆
=

if C = {} ∨ C2 = {} then 0
else let c

∆
= choose c ∈ C : true

c2
∆
= choose c2 ∈ C2 : true

in Fn3[Helper [C \ {c}, C2],
Helper [C , C2 \ {c2}],
TG [c][c].trusts[c2][2]]

in Helper [Clients, Clients]

Initialization

We assume one trust graph per client, represented by r

Init
∆
= TG = [r ∈ Clients 7→

[c1 ∈ Clients 7→
[trusts 7→
[c2 ∈ Clients 7→
⟨false, 0⟩]]]]

vars
∆
= ⟨TG⟩

Calculations from Trustgraph

Can client c pull/push from the other client r ?

CanPull(c, r)
∆
=

∧ c ∈ Clients
∧ r ∈ Clients
∧ ∨ c = r

∨ TG [r][r].trusts[c][1]

1

Figure 5.1: Helper Function Fold(Fn3) from the TLA specification

5.1.2 Running the Model Checker

The model checker needs to be limited rather heavily since the number of states in the model

increase exponentially. For the results of the model checker to be useful we need to run the

model checker with at least three different model values. Otherwise it is impossible to reach

states in which a client gains trust through another client transitively. Because the model

checking would take too long otherwise it was run with three clients as model values and

restricted with either Fold(Max3) ≤ 1 or Fold(Add3) ≤ 7. Fold(Max3) ≤ 1 allows 1 trust

operations to be performed for each client by each client. Fold(Add3) ≤ 7 allows each client

to do a maximum of 7 operations but is not restricted for which client these operations are

done. With these constraints the TLC model checker was not able to find any errors in the

model and produced the results in Table 5.1.

Table 5.1: Results of the TLC model checker

State Constraint Distinct States Runtime
Fold(Max3) ≤ 1 928 995 05:01
Fold(Add3) ≤ 7 688 612 04:12

5.1.3 Errors with Model Checking

Checking the liveness while restricting the model checker is challenging since the model

checker has along runtime. For this reason it was only run with three clients. Because

of this an error in the liveness function InfOftenTransNotCanPull seen in Figure 3.8 went

uncaught until later in the process. The function used to be written as seen in Figure 5.2.

This is wrong because here it specifies that the transitive property does not hold for one

arbitrary client. For the function to be correct the transitive trust has be false for all clients.

Evaluation 19

Fairness
∆
= WFvars(Merge)

FairSpec
∆
= Spec ∧ Fairness

Liveness

TransCanPull
∆
= ∃ c1, c2 ∈ Clients :

∀ c3 ∈ Clients :
(TG [c1][c1].trusts[c2][1] ∧ TG [c3][c3].trusts[c1][1])

⇒ CanPull(c2, c3)

TransCanNotPull
∆
= ∃ c1, c2 ∈ Clients :

∀ c3 ∈ Clients :
(∧ ¬TG [c1][c1].trusts[c2][1] ∨ ¬TG [c3][c3].trusts[c1][1]
∧ ¬TG [c3][c3].trusts[c2][1]
∧ c2 ̸= c3)

⇒ ¬CanPull(c2, c3)

InfOftenTransCanPull
∆
= 23TransCanPull

InfOftenTransCanNotPull
∆
= 23TransCanNotPull

\ * Modification History

\ * Last modified Wed May 07 16:29:21 CEST 2025 by pius

\ * Last modified Fri Apr 11 16:25:52 CEST 2025 by lavoie

\ * Created Mon Apr 14 10:38:55 CEST 2025 by pius

3

Fairness
∆
= WFvars(Merge)

FairSpec
∆
= Spec ∧ Fairness

Liveness

TransCanPull
∆
= ∃ c1, c2 ∈ Clients :

∀ c3 ∈ Clients :
(TG [c1][c1].trusts[c2][1] ∧ TG [c3][c3].trusts[c1][1])

⇒ CanPull(c2, c3)

TransCanNotPull
∆
= ∃ c1, c2 ∈ Clients :

∀ c3 ∈ Clients :
(∧ ¬TG [c1][c1].trusts[c2][1] ∨ ¬TG [c3][c3].trusts[c1][1]
∧ ¬TG [c3][c3].trusts[c2][1]
∧ c2 ̸= c3)

⇒ ¬CanPull(c2, c3)

InfOftenTransCanPull
∆
= 23TransCanPull

InfOftenTransCanNotPull
∆
= 23TransCanNotPull

\ * Modification History

\ * Last modified Wed May 07 16:29:21 CEST 2025 by pius

\ * Last modified Fri Apr 11 16:25:52 CEST 2025 by lavoie

\ * Created Mon Apr 14 10:38:55 CEST 2025 by pius

3

Figure 5.2: Wrong liveness property InfOftenTransNotCanPull

5.2 Security

This section aims to evaluate the security properties of the produced software. This is done

by reviewing the implemented security measures.

5.2.1 System Assumptions

It is assumed that users on this system do not share their private key with anybody and that

their machines are not infected with malicious software. We also assume that the owner of

a replica is trusted and will not modify the trust graph manually for entries other than his

own. Furthermore we assume that a user does not fork his personal access control branch

and pushes the two different versions to two different replicas.

5.2.2 Assumptions on SSH and Git

This application is built on top of Git and SSH which are widely used and actively developed.

For this security evaluation we assume that there are no exploits in these technologies. It

is assumed that one can not log into a server using SSH if that person is not in possession

of the private key that corresponds to the deposited public key. Furthermore it is assumed

that one can not create Git commits with a valid signature without being in the possession

of the private key that corresponds to the fingerprint of the public key Git reports as being

used to sign the commit.

5.2.3 Unforgeable Commits

No one that is not in possession of the private key of a user can forge a commit that adds

or removes trust from this user to anybody. This is due to the self certification of each

commit as mentioned in section 4.2. Because each commit is signed with the private key

corresponding to the user that supposedly made it. This allows us to easily verify that the

commit was made by this user. This means it is impossible to create a commit that changes

trust relationships for a user if one does not possess the corresponding private key.

5.2.4 Ignoring Invalid Reference Modifications

We do not allow deletion of access control branches or force pushes since these would lead to

inconsistencies between the stored trust graph and the trust graph encoded in the commits.

This is done by checking if the new revision passed to the script is only zeros which indicates

branch deletion. After ensuring that there is no branch deletion we make sure that the old

revision is an ancestor of the new revision. This is to make sure there are no forks or deletion

of commits.

Evaluation 20

5.2.5 Non-replication of Invalid Commits

For each commit pushed to an access control branch the pre-receive script [16] checks if

there are no merge commits. This is done by checking if any of the new commits has two

or more parents. It then verifies all cryptographic properties of the commit. This means it

ensures that the commit was signed by the same key that is in the branch name and the

committer email field of the commit.

5.2.6 Enforcing Valid Pull Access

Only people who can pull accordingly to the trust graph definition in section 3.4 can success-

fully pull from the Git repository. This is done through restricting the SSH access discussed

in subsection 4.4.1. The scripts to which the command is passed verify that it is a command

that pulls from the respective repository and if it is not deny access. Granting access is done

through a Git hook discussed in subsection 4.4.2. This hook only grants access if the user

should have access to the repository according to the definitions in section 3.4. This is done

by iterating through all users trusted by the owner directly and all users that are trusted by

a user who is directly trusted by the owner. Since commits can not be forged this is secure.

5.2.7 Enforcing Valid Push Access

Only people who can push accordingly to the trust graph definition in the function Can-

Push(c,r) (Appendix A) can successfully push to the Git repository. The SSH script dis-

cussed in subsection 4.4.1 will verify the command. Access is granted through the Git hook

discussed in subsection 4.4.2. Here we only grant access to the users directly trusted by the

owner by iterating through them and this is also secure since commits can not be forged.

5.3 Deployment Tests on a Single Machine

During development the software was tested using four virtual machines in a virtual network

using Virtual Box. The software was set up in one machine and the others were used to

connect to it, one being the owner. It needed to be at least four virtual machines since

we needed to test the transitive capabilities. Here the software was mainly setup manually

since most of the ease of use improvements were not developed at this point. It was tried

to manipulate the trust graphs in various ways by creating the commits in unconventional

ways. This revealed certain bugs in the software that could be fixed. Once the software was

mostly done it was first deployed in a local docker container for more testing.

5.4 Complexity of the Implementation

The software needs certain dependencies to run. Firstly we need a linux distribution to

handle our operating system needs. Alpine Linux was chosen because of its small size [19].

Since the implementation is built on top of Git and SSH we need those as well. All code is

written in Bash or Python so those need to be installed as well. We also need a non standard

Python package called PyYAML because our trust graph is stored in a YAML file. To install

this package we need Pip. We then also need to add our software to the container which

is two scripts. The entrypoint.sh script that sets everything up correctly in the container

Evaluation 21

and the gac.sh script that installs our software [16]. As shown in Table 5.2 this results in

a total size of 90.5 MB for the container. The main contributor to this size is the Python

installation. The size could be significantly reduced if the implementation was completely in

Bash. One could also install the PyYAML package directly without using Pip which would

save space.

Table 5.2: Size of the Docker container

Program Size

Alpine Linux 7.83 MB
Git 12.22 MB

OpenSSH 5.89 MB
Bash 2.05 MB

Python 3 39.62 MB
Python 3 Pip 19.07 MB

PyYAML Package 3.79 MB
gac.sh 0.00818 MB

entrypoint.sh 0.00126 MB
Adding a User 0.00302 MB

Total 90.5 MB

5.5 Actual Deployment and Usage for Collaboration on

Thesis Writing

The Docker container was deployed to a server for use in backing up and collaborating on

this thesis. This demonstrates that the software is functional and suitable for collaborative

work and data backup.

5.6 Updating the Software

Updating the software is very clumsy since all branches of the access control software depend

on the hash of the root commit. This means when one has a new version of the software

this hash changes since the software it contains is not the same anymore. Therefore all old

access control branches are not usable anymore. One has to create a new server, redo all

access control actions and transfer the branches from the old to the new server.

6
Related Work

This chapter aims to compare the work done in ths thesis to other related software and

research projects.

6.1 Gitolite

Gitolite does something similar to what was done in this thesis [20]. It is a way to manage

Git repositories on a server but compared to the software presented here supports arbitrary

many repositories per user and has finer access control like restricting a user to a branch or

tag of a repository.

It also makes use of restricting a user that accesses the server using SSH through the

command option in the authorize keys file [21]. Instead of simply restricting the commands

a user can execute it is handled in a more flexible way by implementing a shell. This shell

gets passed the username and the command the user wishes to execute. It then determines

if the user has access to said repository. If a user is restricted to a certain branch or tag

it makes use of the update Git hook to determine if said user has access to that branch or

tag [20].

However access to a repository hosted with Gitolite is still always granted by an adminis-

trator. It is done by editing a configuration file in or adding keys to a special administration

repository and pushing these changes to the server. This repository has a special post-receive

hook that for example updates the authorize keys file and creates repositories [22].

This is were the software presented in this thesis differs a bit from Gitolite. In our

software anybody trusted by the owner can grant read only access to anybody they wish.

This is not possible in Gitolite since you could give access to the administration repository

to other people but this would also mean that they could change access for anybody else.

The reason because of which this is possible is that our implementation uses a trust graph

and the operations on that trust graph ar encoded in commits on a Git branch compared to

a config file in a repository. This is a key difference to our system.

Related Work 23

6.2 Grassroots Systems

Our application fits the definition of a grassroots system given by Ehud Shapiro [23]. This

is because there can be several instance of this application on different servers that have

nothing to do with each other. If now a user that has pull access to one of these instance

gains push access to the another instance they can transfer all parts of the trust graph from

one instance to the other integrating the trust graph from the first into the trust graph of

the second instance.

6.3 Other Applications on Git

There are also other applications that were implemented on top of Git for example the

2P-BFT-Log by Erick Lavoie [13]. In comparison to the implementation of this thesis the

2P-BFT-Log is less tolerant of malicious actors. If a person forks their log and sends the two

concurrent branches to two different replicas they will eventually notice this inconsistency

and mark that person as malicious. That log now enters a shrinking phase in which the

replicas will find the earliest concurrent messages on the log and mark them. This would go

down rather differently in our implementation. If a person forked their log here and pushed

the two concurrent branches to two different replicas the replicas would never agree on the

log of that person again.

Another application on top of Git is the Delta-GOC-Ledger by Jannick Heisch [24].

His thesis implements a δ-based GOC-Ledger on top of Git. It also encodes some things

in commits but in contrast to this thesis the actual information about the transactions is

encoded in tree objects which are not used in our implementation.

6.4 Secure Scuttlebutt

Secure Scuttlebutt also uses a self-certifying append-only log and has highly accessible repli-

cas to disseminate messages [25]. In comparison to this implementation the replicas are no

different from the clients apart from having a user interface and are usually public. It is de-

signed as pure peer-to-peer system and can function without these highly available replicas.

Any user can follow a pub in SSB, which would correspond to pull privileges in our system.

To get a pub to follow you back, which would correspond to push privileges in our system,

one needs an invite code. How these invite codes are handed out depends on the operator

of the pub [26].

7
Conclusions

We have shown a secure and simple system to control the access to server hosted Git repos-

itories. The TLA+ model ensures that the system behaves correctly. Using self-certification

we can ensure that only valid updates to the access control system are made. The system

was also deployed using docker and used in the real world to show its functionality. It can be

used in small teams to collaborate on a project or to back up data. However updating the

software is still rather cumbersome and a bit of work since the software depends on the hash

of a commit that contains the software. This makes old versions of the software incompati-

ble with newer versions of the software. It is still an interesting approach to handle access

control with a trust graph secured by self-certification. This allows the administrator to

delegate some work and makes managing access control for a repository simpler. It however

lacks finer control like Gitolite for example and is therefore only suited for smaller groups of

developers.

7.1 Future Work

Using a shell like it is done in Gitolite seems like a good approach. It could be used in this

system as well to allow a single user on a single server to host several replicas while still

encoding the trust operations in Git commits. It would however not be possible to run the

software only in the repository itself but there would need to be communication between

the different repositories. Making future versions of the software backwards compatible

with older versions and enabling easy updates is also something that should be explored.

Adding the option for other people except the owner to grant read and write privileges is

also something that could be added. This would enable the owner to have a substitute.

Supporting different key types would also be a good addition to the software presented in

this thesis.

Bibliography

[1] GitHub. Pricing · Plans for every Developer (n.d.). URL https://github.com/

pricing. Accessed: 2025-05-29, Archived version: https://web.archive.org/web/

20250529135248/https://github.com/pricing.

[2] GitLab. Features | GitLab (n.d.). URL https://about.gitlab.com/

features/. Accessed: 2025-05-29, Archived version: https://web.archive.org/web/

20250519194510/https://about.gitlab.com/features/.

[3] Microsoft. Microsoft acquires GitHub - Stories (n.d.). URL https://news.

microsoft.com/announcement/microsoft-acquires-github/. Accessed: 2025-05-

29, Archived version: https://web.archive.org/web/20250510112857/https://

news.microsoft.com/announcement/microsoft-acquires-github/.

[4] GitHub. GitHub Copilot · Your AI pair programmer (n.d.). URL https://github.com/

features/copilot. Accessed: 2025-05-14, Archived version: https://web.archive.

org/web/20250514003651/https://github.com/features/copilot.

[5] GitLab. Download and install | GitLab (n.d.). URL https://about.gitlab.com/

install/. Accessed: 2025-05-29, Archived version: https://web.archive.org/web/

20250525053709/https://about.gitlab.com/install/.

[6] Chacon, S. and Straub, B. Pro Git . Apress, 2nd edition (2025). URL https://

git-scm.com/book/en/v2. Version 2.1.447.

[7] The Git Development Community. Git - pretty-formats Documentation (2025). URL

https://git-scm.com/docs/pretty-formats. Accessed: 2025-06-01.

[8] The Git Development Community. Git - git-commit-tree Documentation (2025). URL

https://git-scm.com/docs/git-commit-tree. Accessed: 2025-06-01.

[9] The Git Development Community. Git - githooks Documentation (2024). URL https:

//git-scm.com/docs/githooks. Accessed: 2025-05-01.

[10] The OpenBSD Development Community. sshd(8) - OpenBSD manual pages (2024).

URL https://man.openbsd.org/sshd. Accessed: 2025-06-01.

[11] Diffie, W. and Hellman, M. E. New Directions in Cryptography. IEEE Transactions

on Information Theory , 22(6):644–654 (1976). DOI: 10.1109/TIT.1976.1055638.

[12] Mazières, D. Self-Certifying File System. Ph.D. thesis, Massachusetts Institute of Tech-

nology (2000). URL https://www.scs.stanford.edu/~dm/home/papers/mazieres:

thesis.ps.gz.

[13] Lavoie, E. 2P-BFT-Log: 2-Phase Single-Author Append-Only Log for Adversarial

Environments (2023). arXiv:2307.08381.

https://github.com/pricing
https://github.com/pricing
https://web.archive.org/web/20250529135248/https://github.com/pricing
https://web.archive.org/web/20250529135248/https://github.com/pricing
https://about.gitlab.com/features/
https://about.gitlab.com/features/
https://web.archive.org/web/20250519194510/https://about.gitlab.com/features/
https://web.archive.org/web/20250519194510/https://about.gitlab.com/features/
https://news.microsoft.com/announcement/microsoft-acquires-github/
https://news.microsoft.com/announcement/microsoft-acquires-github/
https://web.archive.org/web/20250510112857/https://news.microsoft.com/announcement/microsoft-acquires-github/
https://web.archive.org/web/20250510112857/https://news.microsoft.com/announcement/microsoft-acquires-github/
https://github.com/features/copilot
https://github.com/features/copilot
https://web.archive.org/web/20250514003651/https://github.com/features/copilot
https://web.archive.org/web/20250514003651/https://github.com/features/copilot
https://about.gitlab.com/install/
https://about.gitlab.com/install/
https://web.archive.org/web/20250525053709/https://about.gitlab.com/install/
https://web.archive.org/web/20250525053709/https://about.gitlab.com/install/
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://git-scm.com/docs/pretty-formats
https://git-scm.com/docs/git-commit-tree
https://git-scm.com/docs/githooks
https://git-scm.com/docs/githooks
https://man.openbsd.org/sshd
https://doi.org/10.1109/TIT.1976.1055638
https://www.scs.stanford.edu/~dm/home/papers/mazieres:thesis.ps.gz
https://www.scs.stanford.edu/~dm/home/papers/mazieres:thesis.ps.gz
https://arxiv.org/abs/2307.08381

Bibliography 26

[14] Lamport, L. A High-Level View of TLA+ (2021). URL https://

lamport.azurewebsites.net/tla/high-level-view.html. Accessed: 2025-06-

01, Archived version: https://web.archive.org/web/20250526172354/https://

lamport.azurewebsites.net/tla/high-level-view.html.

[15] Lamport, L. Specifying Systems: The TLA+ Language and Tools for Hardware and

Software Engineers. Addison-Wesley, 1st edition (2002). URL https://lamport.

azurewebsites.net/tla/book-21-07-04.pdf. ISBN: 0-321-14306-X.

[16] Walser, P. SSH-based Access Control of Server-Hosted Replicas for Git-based Applica-

tions (2025). URL https://github.com/piuswa/gac.

[17] SSH. Configuring Authorized Keys for OpenSSH (n.d.). URL https://www.

ssh.com/academy/ssh/authorized-keys-openssh. Accessed: 2025-05-30, Archived

version: https://web.archive.org/web/20250515221536/https://www.ssh.com/

academy/ssh/authorized-keys-openssh.

[18] fadedbee. Does the SSH protocol send the remote name to the remote machine?

Stack Overflow (2018). URL https://stackoverflow.com/questions/52455205/

does-the-ssh-protocol-send-the-remote-name-to-the-remote-machine.

Accessed: 2025-05-01, Archived version: https://web.archive.org/

web/20241220110836/https://stackoverflow.com/questions/52455205/

does-the-ssh-protocol-send-the-remote-name-to-the-remote-machine.

[19] Alpine Linux Development Team. about | Alpine Linux (n.d.). URL https://www.

alpinelinux.org/about/. Accessed: 2025-06-01, Archived version: https://web.

archive.org/web/20250530183254/https://www.alpinelinux.org/about/.

[20] Chamarty, S. overview - Gitolite (n.d.). URL https://gitolite.com/gitolite/

overview.html. Accessed: 2025-05-30, Archived version: https://web.archive.org/

web/20250310003130/https://gitolite.com/gitolite/overview.html.

[21] Chamarty, S. how gitolite uses ssh - Gitolite (n.d.). URL https://gitolite.

com/gitolite/glssh.html. Accessed: 2025-05-30, Archived version: https://web.

archive.org/web/20241214003715/https://gitolite.com/gitolite/glssh.html.

[22] Chamarty, S. concepts, conventions, terminology - Gitolite (n.d.). URL

https://gitolite.com/gitolite/concepts.html. Accessed: 2025-05-30, Archived

version: https://web.archive.org/web/20250527151356/https://gitolite.com/

gitolite/concepts.html.

[23] Shapiro, E. Grassroots Systems: Concept, Examples, Implementation and Applications

(2023). arXiv:2301.04391.

[24] Heisch, J. Delta-GOC-Ledger: Incremental Checkpointing and Lower Mes-

sage Sizes for Grow-Only Counters Ledgers with Delta-CRDTs (2024). URL

https://cn.dmi.unibas.ch/fileadmin/user_upload/redesign-cn-dmi/pubs/

theses/master/Heisch-Delta-GOC-Ledger.pdf. Accessed: 2025-06-16,

Archived version: https://web.archive.org/web/20250227032428/https:

//cn.dmi.unibas.ch/fileadmin/user_upload/redesign-cn-dmi/pubs/theses/

master/Heisch-Delta-GOC-Ledger.pdf.

https://lamport.azurewebsites.net/tla/high-level-view.html
https://lamport.azurewebsites.net/tla/high-level-view.html
https://web.archive.org/web/20250526172354/https://lamport.azurewebsites.net/tla/high-level-view.html
https://web.archive.org/web/20250526172354/https://lamport.azurewebsites.net/tla/high-level-view.html
https://lamport.azurewebsites.net/tla/book-21-07-04.pdf
https://lamport.azurewebsites.net/tla/book-21-07-04.pdf
https://github.com/piuswa/gac
https://www.ssh.com/academy/ssh/authorized-keys-openssh
https://www.ssh.com/academy/ssh/authorized-keys-openssh
https://web.archive.org/web/20250515221536/https://www.ssh.com/academy/ssh/authorized-keys-openssh
https://web.archive.org/web/20250515221536/https://www.ssh.com/academy/ssh/authorized-keys-openssh
https://stackoverflow.com/questions/52455205/does-the-ssh-protocol-send-the-remote-name-to-the-remote-machine
https://stackoverflow.com/questions/52455205/does-the-ssh-protocol-send-the-remote-name-to-the-remote-machine
https://web.archive.org/web/20241220110836/https://stackoverflow.com/questions/52455205/does-the-ssh-protocol-send-the-remote-name-to-the-remote-machine
https://web.archive.org/web/20241220110836/https://stackoverflow.com/questions/52455205/does-the-ssh-protocol-send-the-remote-name-to-the-remote-machine
https://web.archive.org/web/20241220110836/https://stackoverflow.com/questions/52455205/does-the-ssh-protocol-send-the-remote-name-to-the-remote-machine
https://www.alpinelinux.org/about/
https://www.alpinelinux.org/about/
https://web.archive.org/web/20250530183254/https://www.alpinelinux.org/about/
https://web.archive.org/web/20250530183254/https://www.alpinelinux.org/about/
https://gitolite.com/gitolite/overview.html
https://gitolite.com/gitolite/overview.html
https://web.archive.org/web/20250310003130/https://gitolite.com/gitolite/overview.html
https://web.archive.org/web/20250310003130/https://gitolite.com/gitolite/overview.html
https://gitolite.com/gitolite/glssh.html
https://gitolite.com/gitolite/glssh.html
https://web.archive.org/web/20241214003715/https://gitolite.com/gitolite/glssh.html
https://web.archive.org/web/20241214003715/https://gitolite.com/gitolite/glssh.html
https://gitolite.com/gitolite/concepts.html
https://web.archive.org/web/20250527151356/https://gitolite.com/gitolite/concepts.html
https://web.archive.org/web/20250527151356/https://gitolite.com/gitolite/concepts.html
http://arxiv.org/abs/2301.04391v4
https://cn.dmi.unibas.ch/fileadmin/user_upload/redesign-cn-dmi/pubs/theses/master/Heisch-Delta-GOC-Ledger.pdf
https://cn.dmi.unibas.ch/fileadmin/user_upload/redesign-cn-dmi/pubs/theses/master/Heisch-Delta-GOC-Ledger.pdf
https://web.archive.org/web/20250227032428/https://cn.dmi.unibas.ch/fileadmin/user_upload/redesign-cn-dmi/pubs/theses/master/Heisch-Delta-GOC-Ledger.pdf
https://web.archive.org/web/20250227032428/https://cn.dmi.unibas.ch/fileadmin/user_upload/redesign-cn-dmi/pubs/theses/master/Heisch-Delta-GOC-Ledger.pdf
https://web.archive.org/web/20250227032428/https://cn.dmi.unibas.ch/fileadmin/user_upload/redesign-cn-dmi/pubs/theses/master/Heisch-Delta-GOC-Ledger.pdf

Bibliography 27

[25] Tarr, D., Meyer, A., Lavoie, E., and Tschudin, C. Secure Scuttlebutt: An

Identity-Centric Protocol for Subjective and Decentralized Applications. Proceed-

ings of the 6th ACM Conference on Information-Centric Networking (2019). DOI:

10.1145/3357150.3357396.

[26] The Secure Scuttlebutt Development Community. Scuttlebutt Protocol Guide (2025).

URL https://ssbc.github.io/scuttlebutt-protocol-guide/#pubs. Accessed:

2025-06-12, Archived version: https://web.archive.org/web/20250501033448/

https://ssbc.github.io/scuttlebutt-protocol-guide/#pubs.

https://doi.org/10.1145/3357150.3357396
https://ssbc.github.io/scuttlebutt-protocol-guide/#pubs
https://web.archive.org/web/20250501033448/https://ssbc.github.io/scuttlebutt-protocol-guide/#pubs
https://web.archive.org/web/20250501033448/https://ssbc.github.io/scuttlebutt-protocol-guide/#pubs

module prerecieveLogic
extends Naturals
variables TG
constants Clients

Helper

Max [x ∈ Nat , y ∈ Nat]
∆
= if x < y then y else x

Max3[x ∈ Nat ,
y ∈ Nat ,
z ∈ Nat]

∆
= Max [x , Max [y , z]]

Add3[x ∈ Nat ,
y ∈ Nat ,
z ∈ Nat]

∆
= x + y + z

Fold(Fn3)
∆
=

let Helper [C ∈ subset Clients,
C2 ∈ subset Clients]

∆
=

if C = {} ∨ C2 = {} then 0
else let c

∆
= choose c ∈ C : true

c2
∆
= choose c2 ∈ C2 : true

in Fn3[Helper [C \ {c}, C2],
Helper [C , C2 \ {c2}],
TG [c][c].trusts[c2][2]]

in Helper [Clients, Clients]

Initialization

We assume one trust graph per client, represented by r

Init
∆
= TG = [r ∈ Clients 7→

[c1 ∈ Clients 7→
[trusts 7→
[c2 ∈ Clients 7→
⟨false, 0⟩]]]]

vars
∆
= ⟨TG⟩

Calculations from Trustgraph

Can client c pull/push from the other client r ?

CanPull(c, r)
∆
=

∧ c ∈ Clients
∧ r ∈ Clients
∧ ∨ c = r

∨ TG [r][r].trusts[c][1]

1

Appendix A: TLA+ Module

∨ ∃ c2 ∈ Clients :
∧ TG [r][c2].trusts[c][1]
∧ TG [r][r].trusts[c2][1]

CanPush(c, r)
∆
=

∧ c ∈ Clients
∧ r ∈ Clients
∧ ∨ c = r

∨ TG [r][r].trusts[c][1]

Actions

Each client c1 can only modify their trust relationship to other clients in their own section of

the trust graph.

AddTrust
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1][c1].trusts[c2][1] = false
∧ TG ′ = [TG except ! [c1][c1].trusts[c2] = ⟨true, TG [c1][c1].trusts[c2][2] + 1⟩]

RemoveTrust
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1][c1].trusts[c2][1] = true
∧ TG ′ = [TG except ! [c1][c1].trusts[c2] = ⟨false, TG [c1][c1].trusts[c2][2] + 1⟩]

Merge
∆
= ∃ c1, c2 ∈ Clients :

∧ TG [c1] ̸= TG [c2]
∧ TG ′ = [TG except ! [c1] =

[c3 ∈ Clients 7→
[trusts 7→ [c4 ∈ Clients 7→
if TG [c1][c3].trusts[c4][2] < TG [c2][c3].trusts[c4][2]

then TG [c2][c3].trusts[c4]
else TG [c1][c3].trusts[c4]]]]]

Next
∆
=

∨ Merge
∨ RemoveTrust
∨ AddTrust

Invariants

TypeOK
∆
= TG ∈ [Clients → [Clients → [trusts : [Clients → boolean × Nat]]]]

LocalTrustFirst
∆
= ∀ c1, c2, c3 ∈ Clients :

∨ TG [c1][c1].trusts[c3] = TG [c2][c1].trusts[c3]
∨ TG [c1][c1].trusts[c3][2] > TG [c2][c1].trusts[c3][2]

Temporal Formulas

Spec
∆
= Init ∧2[Next]vars

2

Appendix A: TLA+ Module 29

Fairness
∆
= WFvars(Merge)

FairSpec
∆
= Spec ∧ Fairness

Liveness

TransCanPull
∆
= ∃ c1, c2 ∈ Clients :

∀ c3 ∈ Clients :
(TG [c3][c3].trusts[c1][1] ∧ TG [c1][c1].trusts[c2][1])
⇒ CanPull(c2, c3)

TransCanNotPull
∆
= ∃ c2 ∈ Clients :

∀ c1 ∈ Clients :
(∧ ¬TG [c1][c1].trusts[c2][1]
∧ c1 ̸= c2
∧ ∀ c3 ∈ Clients :

∨ ¬TG [c1][c1].trusts[c3][1]
∨ ¬TG [c3][c3].trusts[c2][1])

⇒ ¬CanPull(c2, c1)

InfOftenTransCanPull
∆
= 23TransCanPull

InfOftenTransCanNotPull
∆
= 23TransCanNotPull

\ * Modification History

\ * Last modified Wed Jun 04 14:12:27 CEST 2025 by pius

\ * Last modified Fri Apr 11 16:25:52 CEST 2025 by lavoie

\ * Created Mon Apr 14 10:38:55 CEST 2025 by pius

3

Appendix A: TLA+ Module 30

	Acknowledgments
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Background
	2.1 Git
	2.2 Secure Shell
	2.3 Self-Certification
	2.4 TLA+

	3 Model
	3.1 Transitive Capabilities with a Replicated Trust Graph
	3.2 Initialization
	3.3 User Operations as TLA+ Actions
	3.3.1 Adding and Removing Trust
	3.3.2 Merging

	3.4 Helper Functions
	3.5 Invariants
	3.5.1 Typing
	3.5.2 Local Modifications First

	3.6 Liveness

	4 Implementation
	4.1 User Perspective
	4.1.1 User Operations

	4.2 Commit Structure
	4.3 Architecture
	4.4 Code
	4.4.1 Restricting SSH Access with the Authorized Key Options
	4.4.2 Git Hook
	4.4.3 Installation

	4.5 Deployment
	4.5.1 Deploying the Code on the Host Machine
	4.5.2 Deploying the Code in Docker
	4.5.3 Accessing the Repository

	5 Evaluation
	5.1 Correctness of the Specification
	5.1.1 Limiting the State Space
	5.1.2 Running the Model Checker
	5.1.3 Errors with Model Checking

	5.2 Security
	5.2.1 System Assumptions
	5.2.2 Assumptions on SSH and Git
	5.2.3 Unforgeable Commits
	5.2.4 Ignoring Invalid Reference Modifications
	5.2.5 Non-replication of Invalid Commits
	5.2.6 Enforcing Valid Pull Access
	5.2.7 Enforcing Valid Push Access

	5.3 Deployment Tests on a Single Machine
	5.4 Complexity of the Implementation
	5.5 Actual Deployment and Usage for Collaboration on Thesis Writing
	5.6 Updating the Software

	6 Related Work
	6.1 Gitolite
	6.2 Grassroots Systems
	6.3 Other Applications on Git
	6.4 Secure Scuttlebutt

	7 Conclusions
	7.1 Future Work

	Bibliography
	Appendix A: TLA+ Module

