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Abstract

The Grow-Only-Counters-Ledger (GOC-Ledger) is a novel consensus-free replicated ledger
based on a state-based Conflict-free Replicated Data Type (CRDT). It enables local crypto-
tokens that impose lower infrastructure costs for low-volume intra-community transactions
than existing blockchain projects. CRDTs ensure that all replicas in the system eventually
end up in a consistent state. In order to achieve eventual consistency in state-based CRDTs,
the replicas must periodically exchange their entire state. In the GOC-Ledger, the size of
full states is unbounded and can become large depending on the number of transactions
and accounts. Operation-based CRDTs only transfer operations in their update messages,
leading to smaller message sizes, but require a reliable communication channel. Therefore,
δ-based CRDTs have been proposed that unite the advantages of both approaches, by rely-
ing on the replication of small-states, while guaranteeing correct convergence on unreliable
communication channels.

This thesis presents the δ-GOC-Ledger, a δ-based version of the existing state-based
GOC-Ledger to reduce the communication overhead and increase scalability while still sup-
porting unreliable communication channels. We prove the correctness and convergence of
our design and formally show the relation to the state-based approach. A prototype based
on Git is presented and demonstrates the implementation of CRDTs with Git. We as-
sess both state-based and δ-based versions of the GOC-Ledger by simulating ERC-20 token
transactions to quantify the reduction in message size that can be expected on real-world
transactions and to evaluate the suitability of Git as a platform for implementing CRDTs.

We provide formal convergence proofs highlighting that the current state of the δ-based
ledger can be incrementally computed. This is achieved by exploiting the associativity of
the merge operation, which allows us to merge the latest full state with more recent delta
states in any order. This approach enables efficient incremental computation of states from
a causal history, as represented in a Git commit graph. Our analysis reveals that Git is
quite effective at optimizing the size of state-based CRDT messages by already achieving an
average size reduction of 24% compared to a naive approach. Nonetheless, implementing an
application-specific δ-CRDT reduces the message size during incremental reconciliation by
an additional 10-30%. Based on our results, we identify the overhead associated with the
data representation using Git tree objects and highlight additional possibilities to further
optimize the communication overhead.
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1
Introduction

Besides conventional transaction methods, blockchain technology gained popularity for per-
forming secure global transactions between untrusted parties. Major blockchain projects
such as Bitcoin and Ethereum rely on consensus algorithms that totally order operations
among all replicas of the blockchain. This causes considerable costs, whether in terms of en-
ergy consumption in the case of Bitcoin’s proof-of-work approach [27] or substantial capital
investment in the case of Ethereum’s proof-of-stake model [19].

For small communities, the costs of the required infrastructure of traditional blockchain
projects for low-volume intra-community transactions are often prohibitive. Therefore, local
crypto-tokens [19] have been proposed, which rely on the trust between the participants
of a local economy. Unlike traditional blockchain projects that prevent double-spending,
these tokens are based on the detection of double-spending, enabling cheaper and faster
transactions for smaller ecosystems.

One token design that enables local crypto tokens is the Grow-Only-Counters-Ledger
(GOC-Ledger) [18]. It is a consensus-free replicated ledger built upon state-based Conflict-
free Replicated Data Types (CRDT) [28]. The GOC-Ledger represents different account
state attributes (number of created, burned, transferred, and received tokens) as grow-only
counters that can be combined to calculate the account balance. CRDTs ensure eventual
consistency across all replicas without the need for costly consensus mechanisms between
replicas. As a result, latency and costs are significantly reduced. This approach enables
the transfer of local crypto tokens, especially for smaller communities that cannot afford
the high transaction costs required in other financial systems. However, replicas have to
exchange their entire state with other replicas periodically to achieve eventual convergence.
The state size of the GOC-Ledger increases with the number of participants and transactions
which results in communication overhead and limited scalability. In order to optimize the
message sizes transferred between replicas, Delta-State Replicated Data Types (δ-CRDT)
can be employed. These CRDTs only exchange the modified parts of the state, known as
“deltas”, between replicas instead of replicating the entire state. This approach significantly
reduces the communication overhead [34].

In this thesis, the communication overhead of the existing GOC-Ledger design is opti-
mized by introducing the δ-GOC-Ledger, a delta decomposition of the state-based ledger.
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By only transferring delta states which are much smaller than the full account states, the
size of messages replicated between peers is reduced. The correctness and convergence of
the δ-GOC-Ledger are proven, as well as an implementation based on Git is presented and
evaluated.

1.1 Contribution
To the best of our knowledge, this thesis introduces the δ-GOC-Ledger, the first consensus-
free replicated ledger based on δ-CRDTs. We contributed a strong foundation for further
optimizations by first formally designing the δ-based GOC-Ledger, then providing a pro-
totype using Git, and finally conducting evaluations to show the estimated message size
reduction with real transactions and to investigate how Git’s default optimizations are in-
fluencing this result. We derive a δ-based design of the existing state-based GOC-Ledger
[18] building upon the methods proposed by Almeida et al. [2] and prove that our design
converges correctly and generates minimal delta states. We show how the account history
can be represented as a directed acyclic graph (DAG). With this DAG, the relationship
between the state-based and the δ-based approaches is demonstrated. This allows us to
prove that both approaches converge to the same full state and we can adopt the already
proven properties of the existing GOC-Ledger. Furthermore, the DAG reveals that not all
delta states have to be merged in order to obtain the latest full state, but that it is sufficient
to merge the last computed full state, which we call checkpoint, with all subsequent delta
states.

We present a prototype that demonstrates how CRDTs can be implemented with Git
and how observations from the design phase like checkpoints, i.e. incremental updates, and
account history represented as a DAG, influence the implementation. In addition, we have
developed a simulation application that translates real ERC-20 token transactions into GOC-
Ledger token operations. This allows us to evaluate the implementations and compare the
message sizes generated by the δ-based approach and state-based versions. The evaluation
shows that both variants of the GOC-Ledger benefit from the compression techniques and
object-based structure of Git. We also identified that Git implements a similar optimization
as δ-based CRDTs for state-based CRDTs by only sending new objects while already existing
objects are reused. However, implementing our δ-CRDT design with Git reduces the message
sizes during replication by an additional 10-30%, because it generates smaller tree objects.
We have identified the overhead of our implementation due to the data representation with
Git tree objects and suggested additional ways to further reduce message sizes.

1.2 Outline
In the rest of this thesis, we first introduce important methods and concepts (Chapter 2),
then present the δ-GOC-Ledger (Chapter 3), proofs of the claimed properties of our design
(Chapter 4), an implementation based on Git (Chapter 5), an evaluation of our prototype
(Chapter 6), a review of related work (Chapter 7), and finally we summarize the thesis and
give an overview of future work (Chapter 8).



2
Background

This chapter introduces the necessary background concepts for this thesis, which are impor-
tant for understanding the δ-GOC-Ledger design.

2.1 Grow-Only-Counters-Ledger
Banking systems are mainly used for financial transactions where ledgers are typically cen-
tralized, meaning that financial institutions maintain and manage all the transaction records
and account balances. In contrast, decentralized networks rely on ledgers that are replicated
among multiple participants. The most prevalent approaches involve consensus-based repli-
cated ledgers based on blockchain technology, as seen in Bitcoin and Ethereum. These sys-
tems employ a consensus algorithm to order updates globally, preventing double-spending.
However, these algorithms incur significant overhead and high costs [19].

To address this issue, consensus-free replicated ledgers have been introduced. This con-
cept is based on the observation that the total ordering of operations within the blockchain
is stronger than necessary and that sequential ordering of operations per account is suffi-
cient to prevent double-spending [11]. Since this approach does not require consensus among
replicas, it reduces latency and increases throughput of the system.

An innovative ledger based on the consensus-free approach is the Grow-Only-Counters-
Ledger (GOC-Ledger), developed by Lavoie in 2023 [18]. This ledger implements local crypto
tokens [19] specifically designed for low-value transactions within a community for which the
existing blockchain infrastructure would be too expensive. The GOC-Ledger is a state-based
CRDT combining multiple grow-only counters that are also state-based CRDTs. Various
operations are defined for the creation, destruction, transfer, and acknowledgment of tokens,
which modify the underlying account state. Each account state consists of a unique identifier
(Aid), two grow-only counters that record the number of created (A↑) and destroyed (A↓)
tokens, as well as two dictionaries of grow-only counters which track the number of tokens
sent to (A→) and received from (A←) other accounts. The information stored in these
grow-only counters can be combined to calculate the balance for each respective account
by subtracting the number of burned and sent tokens from the number of created and
received tokens, i.e. balance(A) = A↑ +A← −A↓ −A→. In comparison to other consensus-
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free replicated ledgers, the GOC-Ledger represents a unique approach since the state-based
CRDTs converge even on unreliable communication channels, without imposing specific
requirements on the communication channel.

GOC-Ledger can only prevent overspending when all operations to the same account are
sequential. In real peer-to-peer scenarios, adversarial replicas may disregard this require-
ment, which potentially leads to double-spending. Detecting such adversarial behavior [17]
and developing methods to handle confirmed cases of double spending are still subject of
ongoing research.

2.2 Conflict-Free Replicated Data Types
A fundamental issue in distributed systems is achieving consensus on data values among
multiple replicas, because the concurrent modification of a value without coordination can
easily lead to inconsistency among the replicas.

One way to achieve consistent states across all replicas is to enforce strong consis-
tency [16]. A trivial strategy is to serialize the updates in a global total order, for example
by implementing a central lock that a replica must acquire in order to modify a value. This
ensures that only the replica with the lock can make modifications to a value, while others
must wait until the lock is released again. However, this approach will limit the availability
and latency as described by the CAP-Theorem [8].

Conflict-free Replicated Data Types (CRDTs) offer an alternative approach. This data
structure allows concurrent modifications by multiple participants without the need for
coordination. CRDTs guarantee eventual consistency, i.e. replicas in a distributed system
might temporarily have different states, but they will eventually converge to a consistent
state over time, even if network delays or partitions occur[28]. There are multiple forms of
CRDTs described in the following.

2.2.1 State-based CRDTs
State-based CRDTs allow each replica to update its local state independently and concur-
rently with other participants. These replicas periodically exchange their entire local states
with each other. A deterministic merging function is then used to combine the received
states with their own, ensuring all replicas eventually reach a consistent state.

Figure 2.1 illustrates an example of a state-based dictionary of grow-only counters with
two replicas. The arrows depict the local causal history and the nodes represent states. For
each state, the applied operation leading to this state is shown above the node, while the
resulting local full state is shown below. The inc operation increments the counter value of
the specified key by the desired amount. In this example, the dictionary contains two keys
A, and B, which are incremented by the respective replica. This CRDT’s merge function
(⊔) results in a state with the highest counter value for each key of both input states.
Dotted arrows represent transferred update messages containing the information shown in
the dotted box.

Initially, both replicas have the same state, a dictionary with keys for replicas A and
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B and corresponding counter values. Then, both independently apply the inc operation
on their local state to increment their counter, resulting in a new local state S1

A at replica
A and S1

B at replica B. Afterward, both replicas exchange their full local state, which is
then subsequently merged. We see that even if the states of the replicas were temporarily
inconsistent, replicating and merging the full state of the other participant ensures that both
reach a consistent state. Since the merge function computes the maximum counter values
of both input states, the order and duplication of update messages do not affect the result.

A

B

Figure 2.1: State-based replication of a grow-only counters dictionary between two replicas.

In general, a state-based object is a state-based CRDT if it satisfies all requirements of
a monotonic join semi-lattice [28]. First, all possible states must be ordered by a partial
order. Second, the merge function must compute the Least Upper Bound between two states
within this partial order, ensuring that the merge operation is associative, commutative, and
idempotent. Third, all defined mutators must be monotonically non-decreasing, i.e. they
must result in a state that is equal to or larger than the previous state within the same
partial order. Taken together, these three properties ensure that all replicas will always
converge to a consistent state.

The advantage of these characteristics is that state-based CRDTs do not impose specific
demands on the communication channel. The system still eventually converges to a consis-
tent state, even over unreliable channels where messages may be lost, duplicated, or arrive
out of order.

However, a major drawback of the state-based approach is that the entire state must
be exchanged between replicas, resulting in the transmission of large messages. Depending
on the application, this can lead to significant communication overhead, thereby potentially
incurring high latency and limiting scalability.

2.2.2 Operation-based CRDTs
Instead of transmitting the entire local state as in the state-based approach, operation-
based CRDTs transmit only the corresponding update operations with other replicas after
modifying their local state. Operation-based CRDTs do not require a merge function, but
rely on a causally ordered broadcast communication protocol for the exchange of update
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operations. This protocol must guarantee that updates are delivered in a causally ordered
sequence and need to avoid message loss or duplication to ensure that each update operation
is delivered in-order and exactly once.

Operation-based CRDTs are characterized by a lower communication overhead, since
only small update operations and not entire states have to be exchanged. However, this ap-
proach imposes stronger requirements on the underlying communication channel compared
to state-based CRDTs.

Figure 2.2 showcases the same scenario as in Figure 2.1, but using an operation-based
dictionary of grow-only counters. Since the same operations are applied, the resulting lo-
cal states are equivalent to the state-based version. The key difference lies in the update
messages. Instead of replicating the entire local state, only the executed operations are
transmitted, resulting in smaller messages. However, if for example, the update message of
replica B is accidentally duplicated, the counter value of key B at replica A, would be in-
cremented twice resulting in a value of 9. Therefore, the underlying communication channel
must implement additional mechanisms to prevent such scenarios.

A

B

Figure 2.2: Operation-based replication of a grow-only counters dictionary between two
replicas.

2.2.3 Delta-State Replicated Data Type
Ensuring the specific requirements of operation-based CRDTs for the communication channel
in distributed systems can be complex and may not be feasible depending on the application
and infrastructure. To address this, Delta-State Replicated Data Type (δ-CRDT) has been
proposed, which is a state-based CRDT approach that combines the advantages of both
state-based and operation-based CRDTs [2]. Similar to the operation-based approach, delta-
based CRDTs enable the transmission of small messages between replicas and, as with the
state-based approach, they do not place any complex requirements on the communication
channel. This is achieved by exchanging delta states, which contain the effect of recent
update operations instead of replicating the complete state or individual update operations
between replicas.

Similar to the state-based mutators (m), δ-CRDTs define delta-mutators (mδ). These
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delta-mutators can be applied on a state X, resulting in a delta state Xδ which only contains
the effect of this mutator. By merging the delta with the full state, the effect encoded in
the delta state is applied to the state i.e., m(X) = mδ(X) ⊔ X. Therefore, delta states
are subsequently replicated, allowing other replicas to merge these deltas with their local
state. Eventually, this will lead to a consistent state across all replicas. To achieve optimal
message sizes, the delta-mutator should be minimal and not inflate the resulting delta states
with redundant information, already contained in the full state. Therefore the minimal
delta-mutator mδ⊥ yields the smallest possible delta state Xδ so that there exists no other
delta-mutator that returns a smaller state while containing the same effect.

Delta states can be merged not only with full states but also with other delta states
forming a delta group. This allows to bundle several small effects into one large effect. The
delta group can potentially be smaller in size than the merged delta states if multiple updates
modify the same part of the state, which further optimizes the message sizes replicated
between replicas.

Figure 2.3 shows a δ-based version of the grow-only counters dictionary. The same exam-
ple is illustrated as in the state-based (Figure 2.1) and operation-based versions (Figure 2.2).
Here, the delta-mutator incδ is applied, which returns a delta state containing only the mod-
ified counter values. The resulting local state is the same as in the other approaches since
the delta state encodes the same effect. However, during replication, only this delta state is
transmitted instead of the entire state or the applied operations. Since the merge function of
this approach also takes the maximum of each counter value of the input states, duplicated
update messages do not change the resulting states.

A

B

Figure 2.3: δ-based replication of a grow-only counters dictionary between two replicas.

2.3 Happens-Before Relationship
The happens-before relationship [16] is a fundamental concept for causal ordering events in
distributed multiprocess systems. Informally, if an event a happens before event b, denoted
as a→ b, it implies that a influences b directly or indirectly. The happens-before relationship
fulfills the following properties:
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• Local total order: If two events a and b occur in the same process and a is executed
before b, then a→ b must hold.

• Synchronization order: If a synchronization operation S1 precedes another synchro-
nization operation S2, all events associated with S1 happen before those associated
with S2.

• Transitivity: If event a happens before event b (a→ b), and event b happens before
event c (b→ c) , then event a happens before event c (a→ c).

This way, the happens-before relationship establishes a partial order among events in a
concurrent system. If neither a→ b nor b→ a can be established, the events are concurrent,
written as a || b.

2.4 Append-only Log
Append-only logs are data structures that only permit the addition of new data exclusively
to their end. Once the data is appended to such a log, it becomes immutable and cannot
be altered or deleted. This characteristic facilitates replication and recovery by preserving
a chronological record of messages while preventing retroactive modifications. This makes
append-only logs useful for ensuring data consistency across replicated systems.

Due to these characteristics, append-only logs are often implemented in decentralized,
replicated ledger applications. They are used in the form of blockchains in leading cryptocur-
rencies such as Bitcoin [22] and Ethereum [5]. In these cryptocurrencies, new transactions
are verified through a consensus algorithm, then combined in blocks and finally appended
to a replicated blockchain. Each new block contains a reference to the preceding block in
the form of a cryptographic hash. This hash serves as a unique identifier for that block
and also provides a way to verify the integrity of the data it contains. In addition, each
block is digitally signed by the author’s private key, enabling anyone to authenticate this
signature with the corresponding public key. This cryptographically signed append-only log
establishes self-certification [21]. As a result, transactions are irreversible and resistant to
subsequent modifications and prevent other users from impersonating the author, ensuring
secure and trusted transactions that are crucial to financial systems [23]. These properties
are also useful for other decentralized applications that require the replication of messages
between untrusted parties.

2.5 Git
Git [33] is a widely used distributed version control system. Unlike centralized systems, Git
does not rely on a single server. Instead, it creates local copies (repositories) of the project on
each user’s machine. These repositories track changes over time by taking snapshots called
commits, i.e. a snapshot of the current local file system. Furthermore, it keeps track of the
history of commits, so that users can exchange their state with others and update their local
state to the latest snapshot, merge changes, or undo changes by going back in the commit
history. The most common platform implementing Git is GitHub, a high-availability replica
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with additional access to control mechanisms and project management tools. In January
2023, GitHub reported that it has over 100 million developers and is one of the largest source
code hosts, mainly used for the management of software development projects [7]. Due to
its popularity, Git is available on almost all common platforms and is continuously updated
and optimized.

In order to manage the version of files, Git operates on three different types of objects:
blobs, trees, and commits [6]. The current files of the repository are stored in the local
file system, the working directory, while the Git objects are stored in the ".git" folder. All
objects in Git are identified by computing the SHA-1 hash of their content. When a file of
the working directory is added to the repository, the current content of this file is stored
as a blob, without any additional metadata such as its filename. If the file is modified and
added again, a new blob will be created with the altered content, which also results in a new
SHA-1 hash. Trees assign names to objects. They contain multiple entries, with each entry
consisting of the SHA-1 reference to the object, the type of the object, and the assigned
name. Trees can only contain blobs or other trees. This way, trees enable the assignment
of blobs to the corresponding file name and the organization of files in a dictionary using
nested trees. When creating a new snapshot of the local state, a commit object is created.
It contains exactly one tree, the commit-tree, which refers to all committed files. Besides
additional metadata, such as the name of the committer, timestamps, etc., the commit can
contain hashes that refer to the parents of this commit. These references represent the
happens-before relationship between this commit and its parent. This way, Git maintains
the causal history in the form of a directed acyclic graph, also called the commit history.
Since it is difficult to remember the hash of a commit, Git uses mutable references that map
a name to the hash of a commit. Instead of traversing the whole commit history to find the
latest version, the latest commit can be recovered from the corresponding reference. These
references are also important for the synchronization process, in which replicas compare
the referenced commits and identify the differences between the two repository states and
subsequently only transmit the required objects. If the received changes cannot be applied
without conflict, the affected files are highlighted and the user is prompted to resolve the
issue with an additional merge commit.

The previously introduced Git objects are usually only used internally and abstracted
away from the user by high-level APIs. However, by using lower-level APIs (plumbing
commands), developers can design custom data structures on top of Git for purposes beyond
file version control, while relying on the replication and reconciliation system of Git. This
way, applications can be built on top of Git, such as the 2P-BFT-Log [17], which implements
an append-only log by appending new commits to the commit history that points to the
latest published message as a parent. By using the references as frontiers, i.e. pointers to
the latest message of the log, this implementation can rely on the Git reconciliation protocol
for replication, which compares the frontiers between replicas and then only replicates the
difference.



3
Delta-Grow-Only-Counters Ledger

This chapter introduces the δ-GOC-Ledger, a delta-state decomposition of the state-based
Grow-Only-Counters-Ledger [18] into a Delta-State Replicated Datatype [2]. In order for all
replicas to eventually converge to a consistent state, CRDTs require that all possible states
form a monotonic join semi-lattice, written S, to guarantee convergence [28]. For this, three
conditions must hold: first, all possible states in S must be ordered by a partial order ≤.
Second, all mutators i.e., all operations that modify the state, must be monotonic, ensuring
that they result in a state that is equal or larger than the current one. Third, a merge
function is defined that computes the Least Upper Bound between two states in S, which
results in a state that is larger or equal to the two states. These conditions as well as the
correctness of the ledger shape the design of the δ-GOC-Ledger.

The considered system model is described in the following section. Then, the delta-state
replicated accounts and ledger with the corresponding delta-mutators, query functions, and
merge operations are presented, highlighting similarities and differences to the existing state-
based design. Finally, the properties of the delta-state ledger are discussed.

3.1 System Model
The considered distributed system consists of a dynamic set of replicas, each with its own
local memory. There exists no global memory shared between the replicas, but the replicas
can send update messages to each other. The network is not reliable, e.g. the update
messages can be lost, re-ordered, or duplicated. However, it is assumed that an update
message sent by a node will eventually be replicated across all replicas of the system after
a finite amount of time. In addition, each node records its state on persistent storage,
ensuring that in the event of a crash, the replica is able to eventually recover and resume
the transmission of its latest updates. This guarantees that the updates performed by the
replicas never get lost in the system.

The presented delta-state CRDT, like the state-based GOC-Ledger, is not compatible
with adversarial replicas (see Section 3.4).
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3.2 Delta Account
Similar to the original state-based GOC-Ledger, each account state A is composed of multiple
grow-only counters: A↑ counts the number of tokens created. A↓ tracks how many tokens
were burned. Furthermore, there are two dictionaries of grow-only counters. The dictionary
of given tokens (A→) monitors the number of tokens transferred to other accounts. In
the GOC-Ledger, tokens must be explicitly acknowledged in order to increase the balance
of the receiver’s account. Dividing the transfer of tokens into a sending and confirmation
event allows other replicas to verify whether the recipient account has received the tokens
and gives the recipient the option to ignore tokens. The amount of acknowledged tokens
is stored in an additional dictionary (A←). By combining these counters, it is possible to
compute the balance of this account. Due to the eventual consistency of the state-based
ledger, all replicas that have received the same set of updates will compute the same balance
for this account.

In contrast to the state-based approach, the δ-GOC-Ledger does not transmit the full
account states. Only the effects of operations are sent to other replicas in the form of delta
states (Aδ). Delta-accounts are similar to full accounts, but they only store a delta between
full states and therefore they do not need to store all four account attributes, but only those
that have been changed.

The notation used in the following sections is defined in Appendix A. In order to maintain
the δ-GOC-Ledger design general and avoid being bound to a specific implementation, all
missing fields are internally represented as zero or an empty set, but are not sent to other
replicas. When a missing field of a delta state is accessed, the default value for this field
as defined in Table 3.1 is returned. Since the merge function takes the larger value of
both operands for each attribute, the default values are chosen so that they correspond to
the smallest possible values for each field. This means that default values in a state do
not affect the resulting account state if they are merged with another state. This approach
avoids using other language-specific implementations such as null to represent missing fields,
since depending on the language null may still induce storage overhead, which would make
the delta accounts inefficient. It is assumed that missing fields of delta accounts do not
require any memory space. Mathematically this can be expressed as a partial function that
takes a delta account and is defined for all valid values of a given field. In the case of a valid
value, the function returns this value. Otherwise, if the field is missing or contains invalid
values, zero (for A↑ and A↓ ) or the empty set (for A← and A→ ) is returned.

Account Field Default Value
Aδ
↑ 0

Aδ
↓ 0

Aδ
→ ∅

Aδ
← ∅

Table 3.1: Default values for missing account fields.

To initialize a delta account state with a given identifier, the initializeδA (Alg. 1) function
is used. This method returns an account state with the designated identifier Aid, while all
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other attributes are missing. The resulting delta-account is also called the default state A0
id

because, besides the account identifier, all other fields are missing and therefore correspond
to the default values (Table 3.1). For this reason, A0

id is the smallest of all possible account
states. When merging the default state with any other state A′, the resulting state is always
A′, since A′ is greater than or equal to A0

id (A′ ≥A A0
id). As all delta account states are

instantiated with this method or are merged with a state created by it, every delta state
always contains at least the identifier attribute Aid. Without this attribute, the state could
not be uniquely associated with an owner, so that account balances from different owners
are incorrectly merged.

Algorithm 1 Initialization of a delta account state

1: function initializeδ
A(id)

2: Aδ
id ← id ▷ The other attributes are missing (do not take any memory space)

and are therefore assigned to their default value (see Table 3.1).
3: return Aδ

3.2.1 Partial Order
To achieve convergence, one requirement is that all possible states of the CRDT can be
organized in a semi-lattice S ordered by a partial order ≤. Because all missing fields in
delta accounts are internally represented as their default value (see Table 3.1), all delta
accounts can be represented as a full account. Therefore, they can be partially ordered by
≤A (Algorithm 2) as in the state-based GOC-Ledger, which is already proven to be a valid
partial order for full account states [18]. This partial order defines that an account state A

is less or equal to another state A′, if all identifiers of the ackFrom and giveTo dictionaries
are a subset of those in A′ and if all grow-only counters included in the state are less or
equal the counters in state A′.

It should be noted that only a few fields are usually set for delta accounts, while many
others are missing and therefore represented as zero or an empty set. When comparing a
delta account Aδ resulting from delta-mutators with full accounts A, it often occurs that
Aδ has only one counter that is larger than the corresponding counter in A, while all other
counters are larger in A. Therefore, the ≤A relation cannot be determined, which may lead
to a concurrency between both states A ||Aδ since neither is larger than the other.

Algorithm 2 Partial order between accounts and delta accounts as defined in the state-
based GOC-Ledger [18]

1: function ≤A(A,A′) ▷ A ≤A A′, A and A′ can be a full or a delta account state
2: created← A↑ ≤ A′↑
3: burned← A↓ ≤ A′↓
4: given← A→∗ ⊆ A′→∗ ∧

∧
id∈A→∗

A→[id] ≤ A′→[id]

5: acked← A←∗ ⊆ A′←∗ ∧
∧

id∈A←∗
A←[id] ≤ A′←[id]

6: return Aid = A′id ∧ created ∧ burned ∧ given ∧ acked
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3.2.2 Delta-Mutators
The original state-based GOC-Ledger introduces several operations that are performed on an
account state, written A, and result in a modified account state A′. In the δ-based approach,
these operations are redesigned so that instead of a full state, a delta state, written Aδ, is
returned. This delta state includes only the necessary attributes required to achieve the
equivalent account state A′ when merged with the current state A, without containing any
additional redundant information. For example, when tokens are created for an account
using the state-based method, the resulting state contains all attributes, including those
that are not affected by the operation. In contrast, the delta-mutator yields a state that
only contains the created token field (Aδ

↑), while the other fields are omitted.
In the following, the delta decomposition proposed by Almeida et al. [2] is used to

transform the existing state-based account mutators into delta-mutators. For each account
operation op, a corresponding delta-mutator opδ is designed such that op(A) = A ⊔ opδ(A).
This ensures that applying a delta-mutator to the account state and then merging it with
the current state A yields the same resulting state as performing the original state-based
operation. The delta-mutators for accounts are listed in Alg. 3 and described below. To
streamline the presentation, the proofs that these are indeed correct delta mutators are
given in Chapter 4 (see Proof 4.2.1).

The mutator createδ (Alg. 3) takes a full account state A together with the desired
amount of tokens to be created and returns a delta state. If the amount is valid, i.e. greater
than zero and the account identifier is included in the set of allowed identifiers C, then
the resulting delta account Aδ consists only of the created token field, whereby the created
counter is increased by the amount (Aδ

↑ = A↑ + amount). In the case the prerequisites for
the created operation are not fulfilled, the account will remain in its current state without
updating any counter. It consequently returns a delta state in which none of the fields are
set, also called default state A0. As explained previously, merging A0 with any account state
A will result in the same state A, because all properties of state A0 contain the smallest
possible value.

For burning tokens, the burnδ mutator takes, similar to the createδ operation, the cur-
rent account state A and the requested amount of tokens to burn. There are also certain
requirements that need to be met: the amount must be valid and the account needs a suffi-
cient amount of tokens that can be burned. If the operation succeeds, a delta account Aδ is
returned with only the burned field set to the updated burned counter Aδ

↓ = A↓ + amount.
Otherwise, the mutator results in the default delta account A0, which does not lead to a
state modification when merged with the input state A.

The giveToδ mutator transfers the desired amount of tokens from account A to the
account of the given id. If the balance of A is sufficient, the resulting delta state comprises a
dictionary of grow-only counters containing exactly one key, the id of the receiver, whereby
the corresponding value is the updated counter for this id. Otherwise, the mutator yields
the default delta account A0.

In the GOC-Ledger, tokens sent via the giveToδ operation are not automatically included
in the balance of an account, but must first be acknowledged by the receiver. To achieve this,
the ackFromδ mutator acknowledges all unacknowledged tokens sent from account B to A.
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The unackedFrom operation, a query operation discussed in Section 3.2.3, determines the
difference between the amount of received tokens from B and the amount of acknowledged
tokens of A. If unacknowledged tokens exist, the mutator will return a delta state consisting
of a dictionary of grow-only counters, which contains exactly one key, the identifier of ac-
count B together with the corresponding value set to the amount of acknowledged tokens.
Otherwise, the mutator yields the default delta account A0.

When decomposing the state-based GOC-Ledger, multiple delta-mutators may satisfy
the requirement that merging the resulting delta account with the current state A produces
the correct new State A′, i.e. op(A) = A ⊔ opδ(A). Even the existing state-based mutators
are valid delta-mutators, but they do not provide any optimization benefits. Therefore,
during the design phase of the δ-GOC-Ledger, we have ensured that all presented delta-
mutators return minimal delta states that do not contain any redundant information (see
Proof 4.2.2). This ensures that the delta design reduces the delta-account sizes and thus the
communication overhead between peers as much as possible.

Note that the account mutators only operate on full account states. Using these oper-
ations on delta accounts may result in incorrect account states and consequently incorrect
balances. For instance, consider an account state A with A↑ = 5 and A↓ = 3. Creating an
additional token results in a delta account Aδ = createδ(A, 1) so that Aδ

↑ = 6, while all other
fields are dismissed. Performing a burnδ operation on this delta account, Aδ′ = burnδ(Aδ, 2),
and the subsequent merging of the delta accounts with the current account state A results in
a state A′ = A⊔Aδ ⊔Aδ′ , in which A′ has a burn counter of A′↓ = 3 instead of the expected
amount of 5. The reason for this discrepancy lies in the removal of redundant information
during the createδ operation, which would be crucial for the subsequent correct application
of the burnδ operation.

The only exception where the correct application of a delta mutator to a delta account
always leads to a correct state is the repeated use of the createδ operation without applying
any other operation in-between. In this case, the necessary information for this particu-
lar operator is retained in the delta states. This is not possible for the other presented
delta-mutators, since the information required to calculate the balance or the number of
unacknowledged tokens is missing.

To establish convergence, all mutators must be monotonic, i.e. they must modify a state
in such a way that the resulting state is equal or larger than the input state. Since the
merging of the delta-states obtained from the delta-mutators with the corresponding input
state results in the same state, as later shown in Proof 4.2.1, the mutators presented are
equivalent to the original monotonic state-based mutators.
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Algorithm 3 Delta-Mutators for Accounts
Require: C, set of identifiers allowed to create tokens
1:
2: function createδ(A, amount)
3: Aδ ← initializeδA(Aid)
4: if Aid ∈ C ∧ amount > 0 then
5: Aδ

↑ ← A↑ + amount

6: return Aδ

7:
8: function burnδ(A, amount)
9: Aδ ← initializeδA(Aid)

10: if amount > 0 ∧ balance(A) ≥ amount then
11: Aδ

↓ ← A↓ + amount

12: return Aδ

13:
14: function giveToδ(A, amount, id)
15: Aδ ← initializeδA(Aid)
16: if amount > 0 ∧ balance(A) ≥ amount then
17: if id /∈ A→∗ then
18: Aδ

→[id]← amount
19: else
20: Aδ

→[id]← A→[id] + amount

21: return Aδ

22:
23: function ackFromδ(A,B)
24: Aδ ← initializeδA(Aid)
25: if unackedFrom(A,B) > 0 then
26: if Bid /∈ A←∗ then
27: Aδ

←[Bid]← B→[Aid]
28: else
29: Aδ

←[Bid]← max(B→[Aid], A←[Bid])

30: return Aδ

3.2.3 Query Functions
Unlike the delta-mutators outlined in the previous section, query functions do not return
delta states. Instead, they are used to retrieve useful information based on the current state
of the account and only work on full account states. Because the full states are identical to
the GOC-Ledger design, the same query functions are used.

The balance method (Alg. 4) retrieves the balance of the current account state. To
compute the credit that increases the balance, the create counter and the ackFrom counters
of all identifiers are added together. Conversely, debits are determined by summing the burn
counter and all giveTo counters. The current balance is then derived from the difference
between credit and debit. As the correct calculation of the balance requires knowledge of
all counter values, it can only be calculated from a full account state.

To query the number of unacknowledged tokens from a given account B to the current
account A, the unackedFrom method (Alg. 4) calculates the difference between the tokens
sent from B to A and the tokens of B acknowledged by A. If all received tokens are already
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acknowledged, this function returns zero. Like the balance operation, this is also a query
function and can only be used for full account states for the same reasons.

Algorithm 4 Account Query Operations as defined in GOC-Ledger [18]

1: function balance(A)
2: debits← A↑ +

∑
id∈A←∗

A←[id]

3: credits← A↓ +
∑

id∈A→∗
A→[id]

4: return debits− credits

5:
6: function unackedFrom(A,B)
7: if Aid ∈ B→∗ ∧Bid ∈ A←∗ then
8: return B→Aid

−A←Bid

9: else if Aid ∈ B→∗ then
10: return B→Aid

11: else
12: return 0

3.2.4 Merging States
The last requirement to achieve eventual consistency is the definition of a merge function
that computes the Least Upper Bound between two states in the semi-lattice S, which results
in a state that is larger or equal to the two states. As in the case of the partial order (≤A),
the merge function ⊔A (Algorithm 5) defined for full account states is also applicable for
delta accounts due to the internal representation of delta states.

There are three different merge scenarios: First, a full account A can be merged with
another full account state A′ which results in A′′, as in the state-based approach of the
GOC-Ledger. Second, a delta-account Aδ can be merged with a full account A resulting in
a full account A′′. This corresponds to the application of the effect represented by Aδ to the
current state A. The replicas therefore only need to send the deltas instead of the whole
state. The receiver can then merge the delta accounts with their local full state. Third, delta
accounts can also be merged with other delta accounts, combining the effect of both states
in a single delta account. Instead of applying multiple delta-mutators and transmitting each
resulting delta account separately to other replicas, the delta states can be locally merged
together into one delta state and then sent to other peers. As an additional benefit, this may
reduce the communication overhead when a set of operations modify the same underlying
counters, as only the highest counter values will be transmitted.

By establishing the partial ordering, the monotonicity of mutators, and the merge func-
tion, a monotonic join semi-lattice is defined, which guarantees, that all replicas, once they
eventually have received all state updates, will converge to a consistent state, thus achieving
strong eventual consistency [28].

Due to the chosen representation of delta accounts, the partial order and merge func-
tions of the state-based GOC-Ledger can also be used for delta states. This is possible for
two reasons: first, our notation for delta-state accounts does not explicitly show missing
creation and burned counters, respectively written A↑ and A↓, otherwise the ordering and
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merge operations would have to explicitly test for their presence and replace their value
with the corresponding default value. In contrast to our pseudo-code notation, an actual
implementation has to handle these cases explicitly. Second, the original design of the GOC-
Ledger only stores counters for transfers that actually happened between accounts and not
for all possible accounts. This was initially done to support an open set of participants but
is basically also a form of storage optimization analogous to what we are introducing with
delta accounts.

Algorithm 5 Merge function as defined in GOC-Ledger [18]

1: function ⊔A(A,A′) ▷ Merges accounts, delta accounts or a combination of both
2: assert(Aid = A′id)
3:
4: A′′ ← initializeA(Aid)
5: A′′↑ ← max(A↑, A

′
↑)

6: A′′↓ ← max(A↓, A
′
↓)

7:
8: R← A→∗ ∪A′→∗
9: for id in R do

10: if id ∈ A→∗ ∧ id ∈ A′→∗ then
11: A′′→[id]← max(A→[id], A′→[id])
12: else if id ∈ A→∗ then
13: A′′→[id]← A→[id]
14: else
15: A′′→[id]← A′→[id]

16:
17: S ← A←∗ ∪A′←∗
18: for id in S do
19: if id ∈ A←∗ ∧ id ∈ A′←∗ then
20: A′′←[id]← max(A←[id], A′←[id])
21: else if id ∈ A←∗ then
22: A′′←[id]← A←[id]
23: else
24: A′′←[id]← A′←[id]

25:
26: return A′′

3.2.5 Account History
The partial order ≤A described in Section 3.2.1 is analogous to the happens-before relation-
ship (Section 2.3) between account states, i.e. a state A that happens before the state A′,
which is itself the result of an operation on A, is also smaller or equal to A′, denoted as
A ≤A A′. To better understand the history of account states and the relation between the
state-based and δ-based design, this relationship can be depicted as a directed acyclic graph
(DAG), where the vertices denote account states and the directed edges represent the state
transitions resulting from the delta mutators or merging states. This section introduces the
formal notation for such a DAG representing account histories that is later used to imple-
ment the δ-GOC Ledger design via Git and enable incremental computation of full states
based on previously computed earlier states (Section 5.5).
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Consider a directed acyclic graph (DAG) G = (V,E) that consists of a set of vertices
(nodes) V and a set of directed edges E. Since this graph is a DAG, all edges have a single
direction and there exists no directed path that starts and ends at the same node. Every
vertice V represents an account state A ∈ V , which is included in the set of all possible
account states for the identifier of this account (A≥id), i.e. V ⊆ A≥id. Because the identifier
cannot be changed after its initialization, every account state has the same identifier. E

consists of directed labeled edges that represent a transition from one account state Aj ∈ V

to another account state Ai ∈ V , i.e. (Aj , Ai, l) ∈ E such that Ai ̸= Aj . The edge label
l indicates which type of operation leads to the new account state. There are two possible
operations: if there is exactly one incoming edge, the edge is labeled with the delta state
Aδj→i1 that resulted from the application of a delta-mutator on the parent account state
Aj . If there are two or more incoming edges, the edges are labeled with ⊔ to indicate that
the resulting account state Ai is the result of merging all parent account states.

If a node has no incoming edge, it represents the initial account state (Ai = A0
id) and

is unique. Without loss of generality, it is assumed that each such DAG has exactly one
such node, since every account must first be initialized before any other operation can be
performed, and concurrent initialization followed by operations is equivalent to concurrent
operations on the same initial state. Given that both delta-mutators and the merge operation
result in a state equal or larger than the preceding states, this graph also depicts the causal
history of the account states, with the edges representing the happens-before relationship
between the account states.

Figure 3.1: Example of an account history depicted as a directed acyclic graph.

Figure 3.1 illustrates an example of an account history represented as a DAG. The
account state A0 is the initialization state (state resulting from the execution of initialize)
and therefore has no parent nodes. The other account states result from the application
of different operations. In this example, Aδ1→2

and Aδ1→4

are performed simultaneously.
Therefore the states A2 and A3 are concurrent to A4, i.e. A2||A4 and A3||A4. The state A6

is the most recent one. To calculate A6, the preceding account state A5 can be merged with
the delta account Aδ5→6

i.e., A6 = A5 ⊔ Aδ5→6

, as discussed in Section 3.2.2. Given that

1 Note that the superscript only contains the start and resulting state to simplify the notation. It would
be sufficient to enumerate the delta states, as the parent and resulting state are already given by the
direction of the edge.
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node A5 has multiple incoming edges, its state can be calculated by merging its parents:
A5 = A3 ⊔ A4. Now, the two equations can be combined into A6 = A3 ⊔ A4 ⊔ Aδ5→6

. The
order of the merge is irrelevant because, the merge function is commutative and associative.
This process can now be repeated recursively throughout the entire graph by expanding all
account states with a merge of the parent states and the delta account state. The recursion
will stop at the initial state A0, because it has no parent nodes and cannot be further
substituted. The equation eventually consists only of merges of the initial state A0 and all
applied delta accounts, as each edge was visited at least once: A6 = A0 ⊔ Aδ0→1 ⊔ Aδ1→2 ⊔
Aδ2→3⊔A0⊔Aδ0→1⊔Aδ1→4⊔Aδ5→6

. The multiple occurrences of A0 and Aδ0→1

are caused by
the concurrent states A2 and A4, which leads to branching in the graph. Therefore, recursive
expansion runs through multiple paths between A0 and A6. However, these duplicates can
be eliminated from the equation due to the idempotence of the merge function, yielding
A6 = A0 ⊔Aδ0→1 ⊔Aδ1→2 ⊔Aδ2→3 ⊔Aδ1→4 ⊔Aδ5→6

. This illustrates that the latest full state
A6 can be computed by merging all delta accounts of the account history with the initialize
state A0. We generalize this intuition and prove that it holds for any valid causal histories
in Chapter 4 (see Proof 4.2.3).

Instead of expanding recursively until only the initial state A0 remains, the expansion
can also be performed until a previously computed full state, which we call checkpoint,
is reached. In this way, applications can compute the latest state by merging checkpoint
states with all delta states. This incremental computation of the latest state could be useful,
for example, for systems with high transaction volumes and frequent queries of the current
account state. By avoiding the necessity to traverse the entire account history to compute an
updated state, this approach requires less computation and therefore provides lower latency.

3.3 Ledger
The previous section introduced the account states that can be modified using delta-mutators.
However, a ledger comprises more than just a single account; it maintains records of a col-
lection of multiple accounts. In the state-based GOC-Ledger, this is realized by a grow-only
dictionary of accounts. The δ-GOC-Ledger employs the same delta decomposition technique
as used for the accounts. The delta-based ledger (Alg. 6) is presented below.
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Algorithm 6 Ledger
1: function initialize
2: L← {}
3: return L
4:
5: function addδ(L,A)
6: Lδ ← initialize()
7: if Aid /∈ L∗ then
8: Lδ[Aid]← A
9: else

10: Lδ[Aid]← L[Aid] ⊔A A

11: return Lδ

12:
13: function ≤L(L,L′)
14: return L∗ ⊆ L

′

∗ ∧
∧

id∈L∗
L[id] ≤A L′[id]

15:
16: function ⊔L(L,L′)
17: L′′ ← initialize()
18: I ← L∗ ∪ L′∗
19: for id in I do
20: if id ∈ L∗ ∧ id ∈ L′∗ then
21: L′′[id]← L[id] ⊔A L′[id]
22: else if id ∈ L∗ then
23: L′′[id]← L[id]
24: else
25: L′′[id]← L′[id]

26: return L”
27:
28: function balance(L)
29: return {(id,balance(L[id])) for id in L∗}

Similar to the delta accounts, the operations of the ledger have been redefined as delta-
mutators. These mutators yield a delta ledger state, which contains the effects of the
application of this operation, and not the entire ledger state, the size of which increases
linearly with the number of accounts managed by the ledger.

A ledger can be set up with initialize, which returns a ledger with an empty dictionary,
i.e. with no accounts. As in the case of the delta account, it is assumed that the empty set
is not sent explicitly, but a ledger without any information is interpreted implicitly as an
empty dictionary, which ideally requires no storage.

Due to the implicit representation, the partial ordering of ledger states is determined by
the same comparison function ≤L used in the state-based ledger. For L ≤L L′ to be true,
the account identifiers of L must be a subset of L′ and for every account, the state in L is
smaller (≤A) than in L′. This comparison function also defines the ordering of delta-ledger
states and full ledger states.

The merging of ledger states follows the same procedure as for the state-based version.
The merge L′′ = L ⊔L L′ iterates through the union of account identifiers of both states. If
an identifier is present in only one of the states, the corresponding account state is copied
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to the new state L′′. However, if both L and L′ contain the identifier, L′′[id] is assigned to
the merged account state of both states. The merge with a delta state Lδ represents the
application of the delta mutator’s effect, encoded in Lδ to the current state.

The add operation of the GOC-Ledger is decomposed into a delta-mutator using the
same approach as for the account operations. This function adds an account A to the given
ledger L or if this account is already included, updates the account state by merging it with
the existing one. The addδ mutator returns a delta-ledger state containing a dictionary with
exactly one key, the identifier of the account Aid and the associated updated account state
A. When merged with the current state L, the returned delta account has the same effect
as the state-based operation (see Proof 4.3.1).

The query operation balance returns the current balances of all accounts managed by
the state L. Similar to the delta accounts, its result is only valid for full ledger states.

3.4 Liveliness, Safety and Balance Properties
As shown in Proof 4.2.3 and Proof 4.3.2, merging all delta states with the initialization state
results in the most recent full account state, which is identical to the state achieved with the
state-based GOC-Ledger operations. This equality implies that the delta-state GOC-ledger
complies with all its properties, including the liveliness and safety properties, as well as the
non-zero balance conditions.

This concludes our presentation of the design of the delta GOC-Ledger, which separates
the effects of account operations in the form of delta states from the full state. This way,
replicas only need to replicate the delta states instead of the full state, thereby reducing
communication overhead. Since the delta-mutators have the same effect as their state-
based counterpart, the underlying ledger state stays unaffected. This also implies that
the presented design inherits the properties of the state-based design and converges to a
consistent state across all replicas. The proofs supporting these claims will be presented in
the next chapter.
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Proofs

In this chapter, the properties of the δ-GOC-Ledger presented in the previous chapter are
formally proven. The following proofs adhere to the structured proof format proposed by
Lamport [15].

4.1 Definitions
Firstly, additional notation is defined, which is important for the subsequent proofs.

1. A is the set of all possible account states as defined in the GOC-Ledger [18].
2. A≥0id is the subset of all possible account states with the same identifier id i.e., A≥0id ⊂ A

such that for every state A ∈ A, Aid = id. The superscript (≥ 0) indicates that all
counters of an account state are strictly growing.

3. A0
id = intializeA(id) is the smallest element in A≥0id . Since all counters of A0

id are the
smallest possible and the merge results in the largest counter values of the two operands,
merging any other account state A ∈ A≥0id , with A ̸= A0

id will result in A.

4.2 Accounts
4.2.1 Delta-mutators have the same effect as the state-based operators

Define: 1. op = {create, burn, giveTo, ackFrom}, set of all defined state-based mutators
for accounts, defined in GOC-Ledger [18].

2. opδ = {createδ, burnδ, giveToδ, ackFromδ}, set of all defined delta-mutators
for accounts, introduced in Section 3.2.2.

Assume: 1. A ∈ A≥0id

2. amount ∈ R
3. m ∈ op and mδ ∈ opδ (m is the same operation in both)

Prove: m(A) = mδ(A) ⊔A

Proof:
⟨1⟩1. Case: A′ = create(A, amount) and A′′ = Aδ ⊔A, with Aδ = createδ(A, amount)

⟨2⟩1. Case: Aid ∈ C ∧ amount > 0
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⟨3⟩1. A′↑ = A↑ + amount, all other properties of A remain unchanged in A′

Because of the effect of create.
⟨3⟩2. Aδ

↑ = A↑ + amount, all other properties of Aδ are equal to A0
id

Because of the effect of createδ.
⟨3⟩3. A′′↑ = Aδ

↑, all other properties of A′′ are the same as those of A
Counter values after a merge are always the largest of those of the two operands and
all counter values of A are equal or larger than those of A0

id because A ≥A A0
id.

⟨3⟩4. Q.E.D.
A′ = A′′ because A′′↑ = A′↑ = A↑ + amount and all other properties of A′ and A′′ are
equal to those of A.

⟨2⟩2. Case: Aid /∈ C ∨ amount ≤ 0

⟨3⟩1. A′ = A

Because of the effect of create.
⟨3⟩2. Aδ = A0

id

Because of the effect of createδ.
⟨3⟩3. A′′ = A

Since the merge function computes the least upper bound of both operands and
A ≥A A0

id, the resulting state A′′ is equal to A.
⟨3⟩4. Q.E.D.
A′ = A′′, because A′′ = A′ = A.

⟨1⟩2. Case: A′ = burn(A, amount) and A′′ = Aδ ⊔A, with Aδ = burnδ(A, amount)

Idem ⟨1⟩1 by replacing A′′↑ for A′′↓ and create by burn.
⟨1⟩3. Case: A′ = giveTo(A, amount, id) and A′′ = Aδ⊔A, with Aδ = giveToδ(A, amount, id)

⟨2⟩1. Case: amount > 0 ∧ balance(A) ≥ amount

⟨3⟩1. Case: id /∈ A→∗

⟨4⟩1. A′→∗ = A→∗ ∪ {id}, with A′→[id] = amount, all other properties of A remain
unchanged in A′.

Because of the effect of giveTo.
⟨4⟩2. Aδ

→∗ = {id}, with Aδ
→[id] = amount, all other properties of Aδ are equal to

A0
id.

Because of the effect of giveToδ.
⟨4⟩3. A′′→∗ = A→∗ ∪ Aδ

→∗, with A′′→[id] = Aδ
→[id]. All other properties of A′′ are

equal to those of A.
The merge joins the set of identifiers of the giveTo attribute of both operands.
Because id is only contained in Aδ, the value of A′′→[id] is the same as in Aδ.
⟨4⟩4. Q.E.D.
A′ = A′′ because A′′→∗ = A′→∗ = A→∗ ∪ {id} and A′′→[id] = A′→[id] = amount and
all other properties of A′ and A′′ are equal to those of A.

⟨3⟩2. Case: id ∈ A→∗

⟨4⟩1. A′→[id] = A→[id] + amount, all other properties of A remain unchanged in A′.
Because of the effect of giveTo.
⟨4⟩2. Aδ

→[id] = A→[id] + amount, all other properties of Aδ are equal to A0
id

Because of the effect of giveToδ.
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⟨4⟩3. A′′→[id] = Aδ
→[id]

Because Aδ
→[id] > A→[id] and the resulting state of the merge function consists of

counters that are larger or equal than those of the operands.
⟨4⟩4. Q.E.D.
A′ = A′′ because A′′→[id] = A′→[id] = A→[id] + amount and all other properties
are equal to A.

⟨2⟩2. Case: amount ≤ 0 ∨ balance(A) < amount

⟨3⟩1. A′ = A

Because of the effect of giveTo.
⟨3⟩2. Aδ = A0

id

Because of the effect of giveToδ.
⟨3⟩3. A′′ = A

Merging any state A with A0
id results in the same state A.

⟨3⟩4. Q.E.D.
A′ = A′′ because A′′ = A′ = A.

⟨1⟩4. Case: A′ = ackFrom(A,B) and A′′ = ackFromδ(A,B) ⊔A

Idem ⟨1⟩3 by replacing A′′→ for A′′← and giveTo by ackFrom.
⟨1⟩5. Q.E.D.

For every delta-mutator in ⟨1⟩1, ⟨1⟩2, ⟨1⟩3, ⟨1⟩4, the resulting delta-account merged with
the base state A leads to the same result as the state-based mutators. Therefore, createδ,
burnδ, giveToδ and ackFromδ have the same effect on the account state as their state-
based counterparts when merged with the current state A.

4.2.2 Account delta-mutators return minimal delta states
When decomposing a state-based CRDT into a Delta State Replicated Datatype, there are
multiple valid delta-mutators. Even the trivial decomposition, where the state-based muta-
tor m and the delta-mutator mδ are equal for every possible account state m(A) = mδ(A), is
a valid decomposition. However, the state returned by a delta-mutator should be minimized
to achieve the best possible optimization. Therefore, delta-mutators should be preferred,
which return the smallest possible states and do not leak any redundant information that
is already contained in the account state A. In the following, it is shown that the designed
delta-mutators for account states are indeed returning minimal delta-states.

Define: 1. op = {create, burn, giveTo, ackFrom}, set of all defined state-based mutators
for accounts, defined in GOC-Ledger [18].

2. opδ = {createδ, burnδ, giveToδ, ackFromδ}, set of all defined delta-mutators
for accounts, introduced in Section 3.2.2.

3. OPδ is the set of all possible delta-mutators (valid or not), which implies that
(op ∪ opδ) ⊆ OPδ.

Assume: 1. A ∈ A≥0id

2. m ∈ op and mδ ∈ opδ (m is the same operation in both)
3. Aδ is the set of all possible delta states, i.e. for all Aδ′ ∈ Aδ, Aδ′ = mδ′(A)

such that mδ′ ∈ OPδ and m(A) = Aδ′ ⊔A A
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Prove: Aδ = mδ(A) is the smallest state of Aδ.
Proof sketch: By contradiction. Since at most a single counter has been modified in Aδ

compared to A and that counter is equal to the corresponding counter of A, then a smaller
delta state Aδ′′ <A Aδ cannot be in Aδ, because it would contradict m(A) = Aδ′′ ⊔A A.
Proof:
⟨1⟩1. Case: Aδ = createδ(A, amount) and ∄Aδ′′ ∈ Aδ, with Aδ′′ <A Aδ

⟨2⟩1. Case: Aid ∈ C ∧ amount > 0

⟨3⟩1. Aδ
↑ = A↑ + amount, all other attributes are equal to A0

id

Because of the effect of createδ.
⟨3⟩2. Aδ′′

↑ < Aδ
↑, all other attributes of Aδ′′ are equal to A0

id

Assume by contradiction that such a state Aδ′′ exists. In order to make Aδ′′ <A Aδ

true, at least one counter of Aδ′′ must be smaller than Aδ. Since all attributes besides
the create counter Aδ

↑ are equal to those of A0
id, A

δ′′

↑ must be smaller than Aδ
↑.

⟨3⟩3. Q.E.D.
Since A′ = create(A, amount), with A′↑ = A↑ + amount, the state Aδ′′ cannot be in
Aδ, because Aδ′′

↑ < A′↑, thus contradicting create(A) = Aδ′′ ⊔A A. Therefore Aδ is
the smallest state of Aδ.

⟨2⟩2. Case: Aid /∈ C ∨ amount ≤ 0

⟨3⟩1. Aδ = A0
id

Because of the effect of createδ.
⟨3⟩2. Q.E.D.

Assume by contradiction that Aδ′′ exists. Then Aδ′′ must be smaller than A0
id.

However, by definition A0
id is the smallest state that createδ can return. Therefore,

Aδ is the smallest state of Aδ.
⟨1⟩2. Case: Aδ = burnδ(A, amount) and ∄Aδ′′ ∈ Aδ, with Aδ′′ <A Aδ

Idem ⟨1⟩1, by replacing Aδ
↑ with Aδ

↓ and create by burn.
⟨1⟩3. Case: Aδ = giveToδ(A, amount, id) and ∄Aδ′′ ∈ Aδ, with Aδ′′ <A Aδ

⟨2⟩1. Case: amount > 0 ∧ balance(A) ≥ amount

⟨3⟩1. Case: id /∈ A→∗

⟨4⟩1. Aδ
→∗ = {id}, with Aδ

→[id] = amount. All other properties are equal to A0
id

Because of the effect of giveToδ.
⟨5⟩1. Case: Aδ′′

→∗ ⊂ Aδ
→∗, all other properties of Aδ′′ are equal to A0

id

Assume by contradiction that Aδ′′ exists, then to make Aδ′′ <A Aδ true, Aδ′′

→∗

must be a strict subset of Aδ
→∗. Because Aδ

→∗ contains only one identifier,
Aδ′′

→∗ = ∅.
⟨5⟩2. Case: Aδ′′

→ [id] < Aδ
→[id], all other properties of Aδ′′ are equal to A0

id

Assume by contradiction that Aδ′′ exists, then to make Aδ′′ <A Aδ true, Aδ′′

→∗[id]

must be smaller than Aδ
→∗[id].

⟨5⟩3. Q.E.D.
By contradiction. In either case ⟨5⟩1 and ⟨5⟩2, Aδ′′ contradicts the requirement
giveToδ(A, amount, id) = Aδ′′ ⊔AA and therefore is not in Aδ. This means that
Aδ is the smallest possible state in Aδ.

⟨3⟩2. Case: id ∈ A→∗
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⟨4⟩1. Aδ
→∗ = {id}, with Aδ

→[id] = A→[id] + amount. All other properties are
equal to A0

id

Because of the effect of giveToδ.
⟨4⟩2. Q.E.D.

Idem ⟨3⟩1 because the keys in Aδ
→∗ are equal. The only difference is the value

for the key id. However, also in this case a smaller state Aδ′′ must have a
smaller value for id, which contradicts the assumed requirements for Aδ′′ .

⟨2⟩2. Case: amount ≤ 0 ∨ balance(A) < amount

⟨3⟩1. Aδ = A0
id

Because of the effect of giveToδ.
⟨3⟩2. Q.E.D.

Assume by contradiction that Aδ′′ exists. Then Aδ′′ must be smaller than A0
id.

However, by definition A0
id is the smallest state in Aδ. Therefore, Aδ is the smallest

state of Aδ.
⟨1⟩4. Case: Aδ = ackFromδ(A,B) and ∄Aδ′′ ∈ Aδ, with Aδ′′ <A Aδ

Idem ⟨1⟩3 by replacing Aδ
→ with Aδ

← and giveTo by ackFrom.
⟨1⟩5. Q.E.D.

In ⟨1⟩1, ⟨1⟩2, ⟨1⟩3, ⟨1⟩4 was shown that there does not exist any other delta state that is
smaller than the delta state Aδ returned by the presented delta mutators.

It follows from this result that the delta states returned by our delta mutators (opδ) use
the least amount of space, because the relative space usage is proportional to the ordering
between delta states, i.e. a larger delta state has more counters with non-default values
and/or counters with larger values that takes either the same or more space to represent.

4.2.3 Equality of state-based and delta-based account states

Define: 1. opδ = {createδ, burnδ, giveToδ, ackFromδ}, set of all defined delta-mutators
for accounts introduced in Section 3.2.2.

2. G = (V,E) is a directed acyclic graph (DAG) representing the account history
as introduced in Section 3.2.5, with:

a) V a set of vertices representing account states such that V ⊆ A≥0id .

b) E a set of edges representing transitions between states such that (Aj , Ai, l) ∈
E is a directed edge that starts from state Aj ∈ V , ends on state Ai ∈ V ,
and is labelled with operation l.

c) l is an operation, either:

i. ⊔ if it represents a merge of multiple parent states.

ii. the delta state Aδj→i

that resulted from the application of a delta-
mutator mδ ∈ opδ on Aj , i.e. Aδj→i

= mδ(Aj).

3. P (Ai) = {Aj | (Aj , Ai, l) ∈ E}, the direct parents of account state Ai

4. H(Ai) = {Aj | there exists a directed path from Aj to Ai} ∪ {Ai}, the causal
history of account state Ai.

5. A(Ai) = {Aj | transitive parents of Ai} ∪ {Ai}, the set of causal states of Ai.
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6. Aδ(Ai) = {Aδj→k | Ak ∈ A(Ai) ∧ (Aj , Ak, Aδj→k

) ∈ E}, set of causal delta-
states of Ai.

Assume: 1. For any state Ai ∈ V , exactly one of the three following cases apply:

a) Ai has no incoming edges and is the initial state (Ai = A0
id), therefore it

is unique and has no parents (P (A0
id) = ∅).

b) Ai has exactly one incoming edge starting from Aj labeled Aδj→i

and is the
result of applying a delta mutator on its parents, i.e. Ai = Aδj→i ⊔A Aj .

c) Ai has two or more incoming edges all labeled with ⊔ and is the result of
merging all its parents, i.e. Ai =

⊔
Ak∈P (Ai)

Ak.

Prove: Ai = A0
id ⊔A

⊔
Aδj→k∈Aδ(Ai)

Aδj→k

Proof:
⟨1⟩1. Expansion:

Starting from Ai = Ai, the following cases are recursively applied on any full state Ak

present on the right-hand side of the equation until only full states of the form A0
id and

delta states of the form Aδj→k

remain.
Case: Ak = A0

id: Base case of the recursion, stop (because P (A0
id) = ∅ and cannot be

expanded any further).
Case: Ak = Aδj→k ⊔A Aj : Delta-mutator case, expand Aj .
Case: Ak =

⊔
Al∈P (Ak)

Al: Merge case, expand every Al.

⟨1⟩2. Reduction:
After the expansion step in ⟨1⟩1, all states between Ai and A0

id were traversed. As a
result, every delta state in Aδ(Ai) and the initial state A0

id remain on the right-hand side
of the equation. Since the merge function ⊔A is commutative and associative, this can be
combined in A0

id ⊔A
⊔

Aδj→k∈Aδ(Ai)

Aδj→k

. If merge cases occur during the expansion step,

i.e. there is branching in the graph G, several paths between Ai and A0
id are traversed

during the expansion, which leads to multiple occurrences of the same delta states and the
initial state A0

id on the right-hand side of the equation. However, due to the idempotency
of the merge function, these redundant occurrences can be eliminated.
⟨1⟩3. Q.E.D.

Applying the expansion step ⟨1⟩1 followed by the reduction step ⟨1⟩2 results in the equa-
tion Ai = A0

id ⊔A
⊔

Aδj→k∈Aδ(Ai)

Aδj→k

.

The expansion need not always be done until only A0
id full states remain. It can also

be performed only until the last computed full states, i.e. checkpoints. We call the set of
checkpoints a frontier and we define it as a subset of the causal states of Ai, i.e. F(Ai) ⊆
A(Ai), with its corresponding set of causal delta states Fδ(Ai) =

⊔
Ak∈F(Ai)

Aδ(Ak).

Using these definitions, the previous equality can therefore be rewritten as:

Ai =
⊔

Ak∈F(Ai)

Ak ⊔A
⊔

Aδj→k∈ (Aδ(Ai)\Fδ(Ai))

Aδj→k

(4.1)

The proof follows easily from the previous one.
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4.3 Ledger
4.3.1 Delta-mutators have the same effect as the state-based mutators

Define: 1. L is the set of all possible ledger states as defined in the GOC-Ledger [18].
2. L ∈ L
3. A ∈ A≥0id

Prove: add(L,A) = addδ(L,A) ⊔ L

Proof:
⟨1⟩1. Case: L′ = add(L,A), Lδ = addδ(L,A), L′′ = Lδ ⊔L L

⟨2⟩1. Case: Aid ̸∈ L∗

⟨2⟩2. L′∗ = L∗ ∪ {Aid}, with L′[Aid] = A, while all other properties of L remain
unchanged in L′.

Because of the effect of add.
⟨2⟩3. Lδ

∗ = L∗ ∪ {Aid}
Because of the effect of addδ.
⟨2⟩4. L′′∗ = Lδ

∗

By definition, the merge function always results in a state that is equal or larger
than both operand states. Since L∗ ⊂ Lδ

∗, L is a smaller state than Lδ and
therefore L′′∗ = Lδ

∗.
⟨2⟩5. Q.E.D.
L′ = L′′ because L′′∗ = L′∗ = L∗ ∪ {Aid}.

⟨2⟩2. Case: Aid ∈ L∗

⟨2⟩3. L′[Aid] = L[Aid] ⊔A A, while all other properties of L remain unchanged in
L′.

Because of the effect of add.
⟨2⟩4. Lδ[Aid] = L[Aid] ⊔A A

Because of the effect of addδ.
⟨2⟩5. L′′[Aid] = Lδ[Aid], while all other properties of L remain unchanged in L′.

Because Lδ contains only one account state (Aid) and this account state is equal
or larger than in L.
⟨2⟩6. Q.E.D.
L′ = L′′ because L′′[Aid] = L′[Aid] = L[Aid]⊔AA and all properties of L′ and L′′

are equal to those of L.
⟨1⟩2. Q.E.D.

As shown in ⟨1⟩1, the delta-mutator addδ leads to the same ledger state as the state-based
operator, when merged with the current state L and therefore has the same effect.
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4.3.2 Equality of state-based and delta-based ledger states
Because proving the equality of state-based and delta-based ledger states follows a similar
approach to the account state equality proof (Proof 4.2.3), we provide only a sketch proof
here.

Proof sketch: Analogous to the equivalence proof of account states (refer to Proof 4.2.3),
a directed acyclic graph (DAG) can be used to represent the history of ledger states, with
the vertices denoting ledger states and the edges indicating either a merge or a delta ledger
state. The equation to be proven can then be achieved by performing the same expansion
and reduction steps as for the account states.
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Implementation

This chapter introduces an implementation of the previously presented δ-GOC-Ledger design
using Git [33]. It allows users to create new accounts, initialize tokens, and perform all
defined token operations via a terminal user interface. The implementation is based on
Git and Bash, which can be easily ported to other programming languages. Furthermore,
Git allows us to use the optimized Git operations for the reconciliation and checkpointing
process. This prototype serves as an initial platform to explore the suitability of Git for
implementing Delta CRDTs with a similar structure as the δ-GOC-Ledger, which is analyzed
in the evaluation Chapter 6.

Each replica can initialize an author, which includes generating an ed25519 keypair,
setting up a local Git repository, and committing an alias message that can be used to
publish a user’s self-chosen alias. The implementation supports the initialization of mul-
tiple independent token types by any user to support local crypto-tokens [19], where each
token is identified by the hash of their initialization message. The implementation uses the
combination of the author’s public key and the hash of the token initialization message as
the unique identifier of an account (see Algorithm 1), i.e. the account ID. Once initialized,
an author can perform any operation supported by the δ-GOC-Ledger. The Git push/pull
model is used to synchronize the replicas in the system, while the implementation performs
additional checks on the received updates to verify their correctness and ensure that the
replicas stay in a correct state.

Because integers in Bash are limited to a specific system-dependent range2, all arithmetic
operations are performed using Python, which can handle larger numbers without overflow
issues. In the following sections, important parts of the implementation are presented in
depth.

5.1 System Assumptions
The implementation is designed for a distributed system with an arbitrarily large set of
replicas. Each author is identified by a public key, while the corresponding private key is

2 typically 263 − 1 on modern 64-bit systems
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kept secret by the owner. In addition, it is assumed that each delta state created by the
same author is ordered sequentially within its log, resulting in a total order. This means that
there is no forking in a log, which could otherwise lead to fork-based double-spending [19].
However, this is a limitation of the implementation and not of Git or the δ-GOC-Ledger.
There are known algorithms, such as the 2P-BFT-Log [17] that could be used in order to
detect forking.

5.2 Commits as Delta States
Every account operation results in a delta state, which is implemented as a Git commit
object that contains various attributes: the commit’s author that created contributions
included within the commit, the name of the committer, the commit tree, an SHA-1 that
points to a tree object associated with this commit, none or multiple parents of the commit
and a commit message. Table 5.1 provides an overview of how these attributes are used for
the implementation of delta states. The author name of every commit is set to the ed25519
public key of the account. Because authors always commit updates themselves, the author
of the commit and the name of the committer are identical.

Commit attribute Purpose
Author name Public key of the account that created the delta state.
Committer name Same as author name.
Commit tree Hash referencing the tree-object that represents the delta state.
Parents References to other commits this delta state relies on.
Commit message Only used in special cases, e.g. when storing token alias.
Signature Cryptographic signature of all other commit attributes using the

private key associated with the public key of the account.

Table 5.1: Overview of the purpose of each relevant commit attribute.

The object-based design of Git makes it possible to map the data structure used in the
δ-GOC-Ledger to Git objects in a straightforward way. Each commit points to a commit
tree that contains the actual data of the delta state in the form of tree and blob objects.
This tree can include up to four entries, each representing a different attribute of the delta
state. The created and burned entries point to a blob object containing the corresponding
grow-only counter. The giveTo and ackFrom fields refer to trees, with each entry containing
a reference to the blob that stores the counter for the corresponding account ID. If a specific
field is missing in a delta state, the corresponding entry is also missing in the commit tree.
In such cases, accessing those fields is interpreted as retrieving the default values defined in
Section 3.2. If the state has no attributes at all, for example after initializing an account,
the commit points to the empty tree.

When initializing a new token, a commit is created that stores the alias of the token as
a commit message. This initial commit does not reference any parent commits, as this is
the first operation for this token. Subsequent operations result in commits that store the
corresponding delta state in a tree as described above. The commit message is not used,
but could be useful for other applications or debugging purposes.

Subsequent delta states always keep a reference to the previous delta state of this account
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as a parent, forming an append-only log-like structure for this account ID. In addition,
when acknowledging tokens transferred from another account, reference is also made to
the latest commit of this account in order to encode the causal relationship between the
transfer and the acknowledge operations. This way, the commit history forms a directed
acyclic graph (DAG) for each token type, similar to the DAG representing the account
history (see Section 3.2.5), with the commits representing the delta accounts and the pointers
to previous commits depicting their causal relationship. Due to the characteristics of δ-
CRDTs, the order of received delta states and the number of duplicates are irrelevant for the
resulting state, because the merge is commutative, associative, and idempotent. However,
the established causal relationship between commits is important for the replication with
Git (see Section 5.4) and for efficiently calculating full account states (see Section 5.5).
Furthermore, the self-certifying properties of the resulting append-only logs lead to a chain
of trust, whereby every replica can verify that the delta states are indeed created by the
corresponding author. Modifying or excluding parts of the log would break the chain of trust.
Consequently, the merge of multiple delta states to further reduce the update message sizes
is not possible with the current implementation. Merging would combine multiple commits
into one, altering the author’s log.

Each commit is signed with the private key of the author who generated the associated
delta state. This verifies that the delta state was indeed created by this author and prevents
any subsequent modifications to the commit. Every valid commit must satisfy the following
criteria: 1) The signature of the author can be verified by using the public key contained in
the author name field. 2) If the commit does not represent the initialize state, then there
must exist a path in the commit history to exactly one commit with no parents, the initialize
commit of the corresponding token.

These criteria ensure that a message is correctly forged. However, they do not guarantee
that the included delta state is correct with respect to the properties of the GOC-Ledger,
which is verified during the creation of checkpoints (see Section 5.5).
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Checkpoint

Figure 5.1: Example of a commit history for one token type.

Figure 5.1 shows an example of a commit history for a single token type that is used by
multiple authors. Each box corresponds to a commit that represents a delta state resulting
from an account operation. The directed edges represent the parents of the commit, while the
different colors indicate the author of the commit. This graph only shows a commit history
for one token type. The implementation allows the authors to interact with multiple token
types simultaneously, resulting in one commit history per token type, which are independent
from each other.

The commits of the blue author correspond to the account history shown in Figure 3.1.
Similar to this graph, the commit history of the blue author is a directed acyclic graph. How-
ever, in the commit history, the nodes represent delta states instead of full account states and
the edges correspond to the causal relationship between delta states. Because the account
history includes concurrent states after state A1 for a single account, the corresponding
commit history includes branching after Aδ1

blue. Concurrent states are not supported in the
current implementation of the δ-GOC-Ledger, but could be handled with 2P-BFT-Log [17].
At the time of publication, it is assumed that the other authors behave correctly and form
an append-only log, where the first commit references the initialization message of the to-
ken and the subsequent commits reference the latest commit of the log. In addition, Aδ4

green

references a commit of the red author. This indicates that this delta state is a result of the
ackFromδ operation, where the green author has acknowledged the tokens received from
red.

The graph also shows a checkpoint for the green author that was computed locally, which
is explained in Section 5.5. The black edges on the right-hand side of the graph represent
Git references that are explained in detail in Section 5.3.
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5.3 References as Frontier
In order to maintain the current ledger state of the replicas, for every token type, the last
commit of each author is stored as a Git reference. These references serve as the frontier
of the local state, which is important for retrieving the latest full account state and for the
replication process. Since references are technically a mapping of names to commit hashes,
we also use them as a fast lookup table to retrieve the hash of the corresponding author
alias. Figure 5.2 provides a graphical overview of the implemented reference file structure.

refs/

heads/

frontier/ ▷ Local frontier, replicated to other replicas
<token type>/

<author id>

...

...

alias/ ▷ References to alias commits for every author
<author id>

...

local/ ▷ References for local use only and are therefore not
replicated

token_alias/ ▷ Auxiliary references to map token alias to the hash
of the token

<token alias>

...

checkpoint/ ▷ Latest local checkpoint commit, for every existing
pair of token type and author

<token type>/

<author id>

...

...

remotes/ ▷ Remote frontiers, received from other replicas
<account id>/

frontier/

alias/

...

Figure 5.2: Directory of Git references used for the implementation.

In Git, references are usually saved in the refs directory, with local references stored in
heads and those of other replicas in remotes. To better distinguish the references that are
not synchronized with other replicas, for example, local auxiliary data, the implementation
additionally introduces the local folder. The references stored in heads are split into two
directories: frontier and alias.

In the ledger directory, references are stored, which are also synchronized with other
replicas. For each existing token type, the tips are stored in their own directory within the
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frontier directory, i.e. for every author that interacted with this token type, there is a
reference pointing to the latest message of this author. This way, the latest commit for a
specific account ID can be easily retrieved. In addition, the tips of all token types combined
serve as the frontier of the local repository state, which is important for the replication
process (Section 5.4). A similar approach is also used for maintaining the aliases of the
accounts. Here, the latest alias commit for each author is stored in a reference named after
the public key of the author within the alias directory. This enables other replicas to
quickly retrieve the current alias of a replica.

The local directory stores references to auxiliary data that is important for local oper-
ations. Inside the checkpoint subdirectory, references to the latest calculated checkpoints
are stored for each account ID. Additionally, to efficiently translate token aliases to their
corresponding hash, each known token type has a reference named after its alias stored
in token_alias and points to the commit of the initialize operation. The references in
local are only used locally and are not replicated to other remotes, because the informa-
tion they contain is extracted from the delta states of the δ-GOC-Ledger and can therefore
be computed independently at each replica.

During replication, the frontiers received from other replicas are stored in remotes.
Within this directory, for each replica, a folder is created named after its public key, which
contains a copy of its local frontier. These references are then later used to update the local
repository state in frontier. The combination of the signed commits by the author’s
private key and the reference names that contain the author’s public key establishes self-
certification [21] of the frontier references. As a result, if an adversary attempts to update
a reference to a commit that originates from another author than the one specified in the
reference name, the other replicas can easily determine that the signature of the commit
cannot be verified by the public key and therefore refuse the update of the frontier.

5.4 Replication
The implementation relies on Git’s synchronization protocol in order to exchange delta states
between replicas. By adding another replica as a Git remote, it can synchronize with this
remote using any protocol that is supported by Git. The replication process is divided into
two steps: the pull/push phase and the merge phase.

Updates can be exchanged with other replicas by either pushing or pulling data. In both
cases, the updated references of remotes are stored in their directory and corresponding Git
objects are exchanged. During this process, the local references that represent the current
state remain unchanged and are later updated in a separate merge step. When pushing
updates to another replica, the sender signs the data by using its private key. The receiving
replica relies on Git hook scripts to verify the signature of the received update. References
are only updated if the signature matches the author ID contained in the corresponding
remote reference directory that the sender wants to update. In addition, the receiver checks
that updates pushed by the sender are fast-forwards, i.e. that the current commit is causally
an ancestor of the updated reference. Therefore, a sender can only update existing references
to a commit that causally happened after the commit of the current recipient’s reference by
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sending all causally preceding updates. If the signature is invalid or the push is non-fast-
forward, the update process is canceled. This prevents anyone from impersonating another
replica during the push process and ensures that the sending side is not able to truncate the
commit history. Pushing an additional branch is also a non-fast-forward update, causing
a replica to remain in the same fork of the branch. Consequently, the implementation is
not robust against concurrent operations from the same account ID. Furthermore, the im-
plementation allows to pull updates of other replicas by using the Git fetch operation that
functions in a similar way to the push, but in the reverse direction. However, compared
to the push operation, fetching updates provides lower security guarantees. At the time of
publication, there exists no mechanism for signing the fetch update in Git, so the receiver
cannot verify that the remote is authorized to update the references. Therefore, it is rec-
ommended to only use the push operation or integrate an external authorization protocol
to mitigate this issue. For optimized replication, the provided pull and push operations can
be used with well-known gossip protocols [20].

After the pull/fetch step, the received remote frontier is stored in refs/remotes/

<remote-name>/ and it is guaranteed that this update is a fast-forward. However, it is
not verified that all references point to correctly signed commits, or that the referenced
commit is indeed created by the account specified in the branch name. This validation
is performed in a subsequent merge step. In the merge step, the received updates are
first verified before updating the local references. Since the commits included in the local
frontier are already trusted, only the signature of new commits needs to be verified. Instead
of traversing the whole commit history, which would scale poorly for bigger systems, the
δ-GOC-Ledger implementation first determines the difference between the local and the
received remote frontier in order to identify the new commits that are not yet included in
the local frontier. These commits are identified with the git log operation, whereby the
local and remote references are specified as arguments. This method returns a list of all
commits between the two frontiers, which are then validated. After the signature verification
process, the remote references are merged with a local git fetch operation, which also
verifies that the merged updates causally happened after the local frontier. If the signature
verification fails or the update is not a fast-forward, the process is canceled to maintain
the correctness of the local state. The reception and merge of updates are independent
processes that can be deferred. However, in this implementation, the reception of updates
will automatically trigger the merge function via Git hook scripts for convenience reasons,
instead of requiring the user to explicitly invoke the merge after each update.

This update process ensures that the local state of the replica always remains correct
and trusted, but the correctness of the received delta states is not verified. This validation
takes place during the creation of checkpoints, discussed in the next section.

5.5 Checkpointing
In order to retrieve the latest full state of an account, all the delta states affecting this
account need to be merged. This means, that all commits in the append-only log of this
account ID need to be traversed. This implementation uses git log -first-parent
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refs/heads/frontier/<token type>/<author ID> to retrieve a list of all commits
between the initialize state and the latest commit associated with this account ID in the
frontier. By iterating through this list, each contained delta state is then merged as described
in section 3.2.5, resulting in the current full state for this account ID. However, this implies
that the whole log must be traversed for each state query, which leads to poor scaling in
view of the continuously increasing number of commits.

For this reason, the presented implementation introduces the technique of checkpointing,
formally explained in Section 3.2.5. When computing the full state of an account, the result-
ing state is stored in a local commit that refers to the latest delta state considered by this
checkpoint as its parent. Additionally, a reference is stored in heads/local/checkpoint,
enabling quick access to the computed state. If a full state is requested, it is first checked
whether a reference to a checkpoint already exists. If not, a new checkpoint is created
by merging all delta accounts between the initialize state and the latest delta state. If
a checkpoint exists and the delta state referenced by the checkpoint commit is equal to
the latest delta state, the stored checkpoint is up-to-date and represents the latest state
of the account. However, if the checkpoint is not pointing to the latest delta state, it
needs to be updated. For this, all the delta states between the current checkpoint and the
latest delta account of the local frontier are computed by using git log -first-parent

refs/local/checkpoint/<token type>/<author ID>..refs/heads/frontier

/<token type>/<author ID>. These delta states are then subsequently merged with
the current checkpoint, resulting in a new checkpoint that represents the current full ac-
count state. A new checkpoint commit is generated and the local reference is updated. The
previous checkpoints and the corresponding Git objects are outdated and no longer needed.
Since these old checkpoints are no longer referenced by any object or reference, they can be
safely removed by periodically calling Git’s garbage collection (git prune), which limits
the local storage overhead.

In Figure 5.1, an example of a checkpoint in the commit history is shown. There, Aδ3
green

is referenced by the checkpoint commit via the dotted edge, indicating that the included
full account state was calculated up to this delta state. The incoming black edge of the
checkpoint is the reference stored in refs/local/checkpoints to quickly retrieve the
latest checkpoint. When an operation requires the latest full state of the green author’s
account, the system will identify a difference between the latest checkpoint and the frontier.
As a result, a new checkpoint will be generated by merging the old checkpoint with Aδ4

green

and Aδ5
green.

It is assumed that a replica is only interested in a subset of all available accounts, so main-
taining the most recent checkpoint for every available author and token type would result in
unnecessary overhead. Therefore, checkpoints are computed on-demand, i.e. when a token
operation requires the most recent full state of an account. Furthermore, the correctness of
the received delta states is not verified upon reception, but rather during the computation
of a checkpoint. This validation verifies the following criteria: 1) All intermediary merges
always result in a positive balance 2) For every acknowledgment counter, there exists an ac-
count state of the sender that causally happened before the acknowledgment with a giveTo
counter larger or equal of the number of acknowledged tokens. If those requirements are not
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met, the checkpoint process is canceled and an error is returned. This way, the application
can rely on the correctness of the checkpoints and only the states required by the replica
are computed, which further reduces the computation overhead.

5.6 State-based GOC-Ledger
A state-based adaptation of the δ-based implementation was developed to measure the size of
the messages generated by the state-based GOC-Ledger. This state-based version is similar
to the δ-based implementation and can reuse most of the logic, including the reference system
and the replication process. The key difference, however, is that the commits now represent
a full state. Therefore, every commit must contain all four attributes of an account state.
Consequently, all token operations need to copy the full current state, modify the affected
values and then return a full state.

Since the simulation program verifies all transactions during the evaluation and thus
creates a trustworthy environment, the state-based implementation assumes that the commit
history corresponds to the partial ordering of account states ≤A. Therefore, the latest
commit represents the largest state that includes the information of all preceding states.
However, an implementation for untrusted systems can be added in a straightforward way by
implementing a similar checkpointing strategy as in the δ-based approach (see Section 5.5).

Figure 5.3 illustrates how account states are stored in the state-based and δ-based im-
plementations of the GOC-Ledger. Commit and tree objects are represented as lists, where
the header indicates the type of the object and its corresponding hash, while the list entries
correspond to the attributes contained in the commit or the entries of the tree object. The
pointers depict the references stored as the SHA-1 Hash of the referenced object.

Both versions store a state as a commit, which includes, besides the other commit at-
tributes, a pointer to a tree object that contains the different attributes of this state. How-
ever, while in the state-based approach the commit tree always contains an entry for all
four account attributes, the delta-states in the δ-based version only consist of fields that
were changed by a delta mutator. This means that every commit of a full state includes
three tree objects (one for account attributes, one for giveTo and one for ackFrom) and an
unlimited number of blobs, since the giveTo and ackFrom trees can refer to counters of an
unbounded number of authors. The δ-GOC-Ledger approach only requires one tree object
and one blob, as demonstrated by the upper commit in Figure 5.3(b), when the delta state
is a result of the createδ operator. Using the burnδ mutator results in a similar commit. In
the case of giveToδ and ackFromδ, the resulting commit consists of two trees and only one
blob, as shown in the lower commit in Figure 5.3(b). Therefore, the size of tree objects in
the delta-based implementation has a fixed upper bound, while the tree objects representing
a full state are unbounded and larger, especially for accounts that have many keys in the
giveTo and ackFrom dictionaries.

In naive implementations, the resulting full account states would be significantly larger
than the delta states. However, because of the object-oriented design of Git, not all objects
included in the commit tree will be stored again. As explained in Section 2.5, all objects
are identified by their SHA-1 Hash. This hash stays the same as long as the content stored
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Figure 5.3: State representation in Git for state-based and delta-based GOC-Ledger.

in the tree or blob object remains unchanged, i.e. the dictionary or counter is unmodified.
Therefore, a commit tree that points to an unchanged field, will refer to the same hash
as the previous state. The object with this hash already exists and thus does not need to
be sent again. Figure 5.4 shows how the different token operations affect the underlying
Git objects of the resulting state commit. The objects that have changed in comparison
to the previous state are highlighted in red. The create operation (Figure 5.4(a)) increases
the corresponding counter and thus creates a new blob. The commit tree must also be
modified to point to the hash of the generated blob, which leads to a new tree object. Since
the other fields are not affected by the create operation, the corresponding objects remain
unchanged. Therefore, after a create operation, the resulting commit includes exactly one
new tree object and one new blob object. This also applies to the burn mutator. The giveTo
operation also modifies a blob. This blob is referenced by a tree that maps the author ID
to the blob that contains the corresponding counter. In this case, two new tree objects, the
commit tree and the tree containing the giveTo entries, and one blob are generated. When
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the ackFrom operation is performed, it leads to a similar case, where instead of the giveTo
tree, the tree containing the references for the ackFrom counters must be generated.

Therefore, the number of modified objects that need to be transmitted is the same as
in the delta-state implementation of the GOC-Ledger. This means that the object-based
design of Git and the referencing of those via their hash lead to a similar optimization as
seen in Delta-State Replicated Datatypes for such data structures, where only the updated
objects are sent. One major difference, however, is the different size of the tree objects in
the state-based and δ-based implementations, as discussed above. When a tree is modified,
the newly generated tree must encompass all entries of the previous version in addition to
the modified one. Therefore, the δ-based implementation further reduces the communication
overhead by using smaller tree objects, especially for accounts with large giveTo and ackFrom
dictionaries.

If multiple counters within the same or different account states have the same value,
only a single blob containing this integer value is generated and the trees containing these
counters reference the same hash multiple times. Hence, the reuse of a blob object for various
counter values is another optimization achieved through the design of Git and applies to
both state-based and δ-based implementations.
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Figure 5.4: Modified trees and blobs (in red) after a state update for the state-based GOC-
Ledger.
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Evaluation

In this chapter, we compare the δ-GOC-Ledger and state-based implementation of the GOC-
Ledger presented in Chapter 5. The primary goal of the evaluation is to determine to what
extent the δ-based approach optimizes the amount of data that needs to be transmitted
between replicas. For this reason, we developed a simulator that emulates real ERC-20 [35]
transactions using the GOC-Ledger. We compare both implementations along three main
dimensions: 1) How much total space is required to replicate or store the full causal history?
2) What is the size of incremental updates transmitted between replicas? 3) How effective
are the compression techniques and data representation natively implemented by Git?

First, the methods used to obtain the results are explained in Section 6.1. The results
for each dimension are then presented and discussed in Section 6.2.

6.1 Methodology
This section provides an overview of the methodology used for the results. To gain insights
that take into account the practical relative distribution of operations and interaction pat-
terns between accounts, real token transactions should be used for the evaluation. However,
since there is no dataset for local crypto-tokens because the design has not yet been deployed
in practice, we have instead used real-world traces of transactions that follow the ERC-20
token standard [35], which supports similar operations to the GOC-Ledger but instead
represent transactions within a single global community.

ERC-20 is a technical standard for fungible tokens implemented as smart contracts on
the Ethereum blockchain. In this context, smart contracts [30] are essentially self-executing
programs that are deployed on blockchains and define the rules and functionalities of the
token. ERC-20 introduces a standardized API for such tokens, including methods for ini-
tializing and transferring tokens and for querying the balance of different accounts.

6.1.1 ERC-20 Transactions Dataset
For simulating ERC-20 Tokens transactions, the database provided by Blockchair[35] is
used. This dataset keeps a record of all transactions of existing ERC-20 tokens since 2016.
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For every single transaction, various data attributes are stored. An overview of those is
provided in Table 6.1. Some fields are not used for the simulation such as information about
the block of the transaction or the token decimals, which is not directly supported by the
implementation.

Dataset field Type Description
block_id int The position of the block containing the transaction in the

Ethereum blockchain.
transaction_hash string Cryptographic hash of the block containing the transac-

tion.
time string Date of creation of the block containing the transaction.
token_address string Unique identifier of the token.
token_name string Alias of the token.
token_symbol string Symbol of the token.
token_decimals uint8 The number of decimal places associated with this token.
sender string Unique identifier of the sender of the transaction.
recipient string Unique identifier of the recipient of the transaction.
value uint256 The amount of tokens transferred in the transaction.

Table 6.1: Overview of the various fields of the dataset.

Since the dataset contains information on transactions over more than seven years with
millions of accounts interacting with each other, replaying all transactions would be com-
putationally prohibitive and beyond the scope intended for the deployment of local crypto-
tokens. Therefore, a subset of transactions was chosen and we randomly picked the 27th of
April 2017 for simulation, which contains enough data for meaningful insights and viable
runtime. On that day, a total of 14782 transactions were performed on 81 different tokens
that affected around 8000 accounts.

6.1.2 Simulation of Transactions
To simulate the ERC-20 tokens transactions with the GOC-Legder, a Python script was
developed that parses the dataset, translates the transactions into GOC token operations,
and finally measures different metrics. First, the dataset is analyzed and different auxiliary
data structures are created, containing various information used in the following simulation
step. The simulation is decomposed into four different phases:

1. Author Initialization: First, all senders and recipients that are involved in the
transactions must be initialized. The existing alias system is used to map the generated
author public key to the corresponding Ethereum account address.

2. Token Initialization: In addition, the various tokens must be initialized as well.
Therefore, each token in the data set is initialized in the simulation by the first author
who interacts with this token. Similar to the authors, the token alias is used to map
the GOC token to its corresponding Ethereum token address.

3. Token Creation: In order to simulate all transactions, the sender must have enough
tokens to perform the token operations. Since the simulation focuses on a specific day
within the dataset, the starting balance for each account is unknown. Therefore, all
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accounts begin with zero tokens. Additionally, the ERC-20 token is based on a smart
contract that can include the creation of tokens for different accounts during their
initialization or define additional functions to create tokens. This information is not
contained in the dataset and would require the decompilation and analysis of all smart
contracts, which is beyond the scope of this evaluation. To prevent accounts from
exceeding their balance when performing transactions, the simulation first calculates
the required number of necessary tokens to successfully perform all transactions for
that day and creates them before simulating the transactions in the next phase.

4. Transaction Simulation: After the previous steps, every account is initialized and
has sufficient balance to perform the ERC-20 transactions of the dataset. Every trans-
action of the selected day is simulated, whereby three different scenarios can arise:

1) If the ERC-20 transaction is performed between two existing accounts, the sender
first performs a giveTo operation, followed by an acknowledgment of the recipient.
This approach leads to more acknowledgment operations than required because the
recipient could receive tokens in multiple giveTo operations and acknowledge them
in a single operation. However, the ERC-20 tokens do not need to be acknowledged,
therefore there is no data available when a recipient should acknowledge.

2) If the transactions in the dataset are sent from the zero-address ("0x0", a virtual
token address) to an existing account, then this represents a mint operation. This
process is not defined in the original ERC-20 specifications, but minting is a method
available in many ERC-20 libraries, such as OpenZeppelin [24]. It is very similar
to the creation operation of the GOC-Ledger, where accounts that have the right
permission can create new tokens. Therefore, a create operation is performed during
the simulation, where the recipient of the transaction creates the specified amount of
tokens.

3) If the transaction is sent from an existing account to the zero-address, it represents
a burn operation. As for the mint operation, the burn operation is an extension of the
existing ERC-20 specification. It is similar to the burn operation of the GOC-Ledger
and can therefore be mapped in a straightforward way.

At the end of the simulation, the balance of all accounts of the GOC-Ledger is compared
to the expected simulated balance to ensure that the simulation was performed successfully.
The different assumptions made during the simulation cause the balance of the accounts
to differ from the corresponding ERC-20 accounts. However, this difference does not affect
the result of the evaluation, since our focus is on comparing the state-based and δ-based
versions of the GOC-Ledger and not the comparison between the GOCC-Ledger and the
ERC-20 tokens.

6.1.3 Measurements
The ERC-20 dataset described above only contains information about the transactions,
but there exists no information on how the data was replicated among all the participants
of the system. Therefore, a special version of the presented GOC-ledger implementations
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is used for the simulation, which performs token operations of multiple authors within a
single repository instead of creating one repository per author. This reduces the simulation
time, as there is no need to transfer and merge updates. However, the underlying logic
remains unchanged, meaning that all generated states/commits and thus also their sizes are
identical to the previously introduced implementations. This allows us to analyze the size
of the update message that needs to be transferred between two replicas, independently of
specific replication algorithms.

To measure the data size that needs to be transferred between two replicas, the sim-
ulation periodically creates bundle files of the current repository state. Since bundle files
are compressed by using the same method as used when synchronizing updates with an-
other repository via Git push or fetch, their size reflects the actual amount of data that
needs to be transmitted during replication. Every 200 transactions, two bundle files are
generated: One bundle file contains the entire ledger commit history, which is transmitted
if a new replica is onboarding the system, and also represents the compressed size of only
the essential information required to store transactions with our design. The second bun-
dle file contains the difference between the last recorded repository state and the current
state, which corresponds to a reasonable estimate of the amount of data that needs to be
transmitted to another replica when incrementally reconciling their state. In the absence of
real-world deployment data, we estimated the latter to be 200 transactions.

To gain a better insight into the behavior of the underlying Git objects and compression,
the tool git-sizer [10] is used to measure various repository metrics, including the number
and size of different Git objects.

6.2 Results
This section presents and discusses the measurement results obtained from the simulation.
First, the size of the bundle file that contains the entire transaction history is analyzed. The
incremental update behavior of the GOC-Ledger implementations is then presented, i.e. the
data that is transferred periodically to other replicas. Finally, the advantages of Git’s object
representation and compression are examined.

In each of the following figures, the red area indicates the author and token initialization
phase of the simulation (see Section 6.1.2), followed by the blue area representing the token
creation phase. After these phases, the simulation executes actual transactions, including
create and burn, as well as giveTo and ackFrom operations. For the evaluation, the term
token operation refers to all operations defined for the GOC-ledger (initialize, create, burn,
giveTo, and ackFrom) and the initialization of an author.

6.2.1 Total Space for Storage and Full Replication
The following analysis examines the total bundle file size, which contains the entire token
history. The graph in Figure 6.1 shows the bundle file size in KB for the state-based and
delta-based versions of the GOC-Ledger throughout the entire simulation.
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Figure 6.1: Bundle file size.

Overall, the δ-based implementation consistently results in lower or equal bundle file sizes
compared to the state-based version. During the initialization phase, the state-based and
delta-based versions have identical bundle file sizes, which grow linearly with the number of
token operations. In the token creation phase, the state-based bundle file becomes slightly
larger than the delta approach, but both versions still follow a relatively linear growth.
At the beginning of the transaction phase, the size difference between the two versions is
insignificant. However, the delta-based implementation maintains a linear growth in size,
while the state-based approach reveals a slightly superlinear increase. This leads to an
increasing difference between the bundle file sizes of both versions the more transactions are
simulated.

Figure 6.2 shows the total uncompressed size of the different Git objects contained in the
bundle file for different numbers of simulated token operations. Since the size of blobs and
commits is nearly identical for the state and delta approaches, the measurements of both
versions are combined into a single curve for these objects.

Figure 6.2: Total size of different git objects.



Evaluation 47

The growth of the blob objects for both versions is barely visible in the figure, as they
are relatively small in size compared to the other object types. The size of commits is
slightly larger than the blobs and scales linearly with the number of token operations.
The most significant difference between the state-based and δ-based versions lies in the
size of tree objects. At the beginning, during the initialization and creation phases, both
versions are nearly identical. However, during the transaction phase, the total tree size
shows a significant growth in size. The growth indicates a quadratic pattern, but further
experiments with more transactions are required to confirm this observation. The trees in
the delta approach require less space than the state-based variant. This difference does not
consistently increase with the number of transactions, although it becomes more significant
in comparison to the beginning of the transaction phase.

Figure 6.3 shows the number of Git objects stored in the bundle file for both state-
based and delta-based implementations and Figure 6.3(a) provides an overview of the total
number of Git objects, as well as the number of objects stored in delta chains during Git’s
delta-compression. The bundle files of both versions contain almost the same number of Git
objects. However, the state-based version shows a slightly faster increase of objects in the
transaction phase than the δ-based implementation. During the initialization phase, both
versions indicate a linear growth in object count with the number of operations, followed
by a steeper linear increase. Git does not employ delta chains in this phase. Only in the
transaction phase, an increasing number of objects can be stored in delta chains. The
state-based variant employs more Git delta objects compared to the delta-based one. The
quantity of delta objects used in both implementations grows linearly with the number of
token operations and the difference between the two versions also steadily increases.

(a) Total number of Git objects and delta objects (b) Number of blob, tree and commit objects

Figure 6.3: Overview of the number of Git objects and deltas in the bundle file

Figure 6.3(b) offers a more detailed look at how the total number of objects is distributed
among the three different Git object types used in the implementations. In both versions,
the number of blob and commit objects remains identical throughout the simulation and is
therefore summarized in a single curve. During the initialization phase, no blob and tree
objects are created. As the simulation progresses, the number of blob objects gradually
increases with the number of token operations, but is insignificant compared to the other
object types. In both implementations, the number of commits follows a linear pattern and
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is equal to the number of executed token operations throughout the simulation. The key
difference between the state-based and δ-based versions is the number of tree objects. At the
start of the simulation, both versions have the same number of tree objects. But during the
transaction phase, the bundle file of the state-based implementation contains slightly more
tree objects than in the δ-based variant. The deviation increases slightly with the number of
executed token operations. While the number of commits dominates at the beginning, tree
objects later become more prominent due to their faster growth rate during the simulation
of transactions.

6.2.1.1 Discussion

Overall, the results presented above demonstrate that the δ-based implementation consis-
tently generates smaller bundle files than the state-based version. This means that less data
needs to be transferred when replicating the entire ledger state to other replicas. Further-
more, the size gain of the δ-based implementation improves as more token operations are
performed, indicating superior scaling behavior compared to the state-based version.

In the initialization phase, both versions require a similar amount of data because the
author and token aliases are published in a similar way. The only difference is that for the
initialization of a token, the state-based version generates a tree object, in which all fields
correspond to the default value of a state. However, this tree is generated only once and
can be reused (see Section 5.6) for the initialization of all other tokens and therefore does
not significantly influence the bundle file size. In this phase, the size of the commit objects
dominates because, besides the additional metadata, they contain the alias name as their
commit message. In this evaluation, all alias names correspond to Ethereum addresses that
have a fixed size of 40 characters (as a hexadecimal representation). Real aliases chosen by
users may be shorter and differ in size.

During the token creation phase, a similar behavior is observed. The bundle file size
of both versions is nearly identical because the state-based and δ-based implementations
generate states, which contain a create counter with the same value, thus creating the same
blob objects and a new tree object that refers to this updated blob. In the delta case, this
tree only contains one entry, while the one in the state-based approach contains all four state
attributes, thus resulting in a slightly larger tree object. Therefore, the bundle file size of the
state-based implementation is slightly higher. However, this difference in size is insignificant
and barely visible in the presented figures compared to the difference in the transaction
phase. It is important to mention that the creation phase, i.e. the execution of subsequent
create operations without any transaction in between, is not a real-world usage scenario
for financial systems, but is required for setting up the required simulation environment.
Nevertheless, this demonstrates the behavior of a system in which new initialized tokens are
created without any prior transactions.

The key difference between the two approaches becomes evident in the transaction phase
of the simulation. During this phase, the state-based implementation requires significantly
more data to represent the same ledger state, as shown by the increasing difference in bundle
file size (Figure 6.1). By analyzing the total size of the different Git object sizes (Figure 6.2),
we can see that only the size of the tree objects affects the difference between both versions,
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while the size and number of the other objects are almost identical. Both implementations
have the same number of commits, which is equal to the number of token operations, since
each token operation leads to a new state that is represented as a commit. Additionally,
the sizes of blob objects are the same, because both implementations transmit the same
counter values, as explained above. The crucial difference lies in the number and size of the
tree objects. As expected, the state-based approach generates more and larger tree objects,
since the ackFrom and giveTo trees contain multiple entries in addition to the modified
entry, while in the δ-based version these trees contain only one entry, resulting in a smaller
object (see Section 5.6).

When comparing the sizes of the different Git objects in Figure 6.2, the size of the tree
object has the most significant impact on the size of the overall bundle file, while the sizes of
commit and blob objects are almost negligible. This is further highlighted when examining
the size of the resulting uncompressed repository in Figure 6.6, where the curve of the tree
size in Figure 6.2 is almost proportional to the size of the repository. Furthermore, the blob
and commit objects show only sublinear growth, while the total tree object size increases
roughly quadratically with the number of token operations. These observations show that
the size of the tree objects is the most dominant and thus limiting factor for scalability
in both state-based and delta-based implementations. Because the delta-based approach
results in smaller tree objects, the scalability is significantly increased in contrast to the
state-based approach.

During the creation of bundle files or the synchronization of the current local state with
other replicas, Git compresses the objects using Zlib and delta compression. It analyzes the
objects and identifies delta objects, i.e. objects that can be expressed as a modification of
an already existing object, which are more efficiently stored in delta chains. Figure 6.3(a)
shows that the state-based version offers more possibilities for delta compression than the δ-
based implementation. Git balances the delta compression’s performance overhead and the
achieved compression gain [9]. However, understanding which characteristics of the state-
based implementation favor the creation of delta chains would require a deeper analysis of
the delta compression algorithm of Git, which is beyond the scope of this evaluation.

To summarize, the Git δ-GOC-Ledger implementation requires less data to be transferred
between replicas than the state-based approach. The difference between the state-based and
δ-based implementations is mainly due to the size of the tree objects, which are generally
larger in the state-based approach. Since the number of entries in the trees is bounded in
the δ-based implementation, while the number of entries in the state-based version grows
on average, our design scales significantly better with the number of executed operations.
However, due to the significant growth in size, the tree objects impose a scalability limit for
both versions. The analyzed bundle file contains the entire ledger history that is transferred
when a new replica is onboarded, but does not represent the behavior when incremental
updates are exchanged. This scenario is analyzed in the next section.
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Figure 6.4: Size of the incremental bundle
file (containing 200 transactions each).

Figure 6.5: Size reduction of the delta-
based approach compared to the state-
based implementation (higher is better).

6.2.2 Size for Incremental Updates
This section presents the results regarding the amount of data required to be transmitted
to a replica that incrementally synchronizes its state every 200 token operations. Figure 6.4
shows the size of the incremental bundle file for both the state-based and δ-based GOC-
Ledger implementations. During the initialization phase, both versions result in incremental
bundle files of constant and identical size. Then, the bundle file size starts to grow. This
increase is not constant, but rather fluctuates. However, as more transactions are performed,
the peak of the incremental bundle file size increases. The incremental bundle file of the
δ-based implementation consistently remains smaller than the state-based version, with one
exception at around 40000 token operations, where the δ-based bundle file is marginally
larger. The ratio between the state-based and delta-based incremental bundle file size is
shown in Figure 6.5. This indicates how much the bundle file of the delta approach is
reduced in contrast to the state-based implementation. In the initialization phase, no size
reduction is observed. After this phase, the δ-based version consistently leads to a reduction
in size, except for the outlier at 35000 and 40000 token operations, which results in a larger
bundle file than the state-based version. The reduction in size fluctuates significantly, where
it reaches reduction factors of up to almost 50%. The black dotted line represents the
Ordinary Least Squares (OLS) linear regression of the size reduction. It indicates the trend
of size reduction of the delta-based approach as the number of executed token operations
increases. It can be observed that the file size reduction is steadily growing with the number
of token operations.

6.2.2.1 Discussion

In this scenario, it is observed that the delta-based implementation results in overall smaller
updates than the state-based version. These findings are consistent with the analysis of the
total bundle file containing the entire ledger history (see Section 6.2.1). The identified outlier
at 40000 operations may be caused by the compression used by Git to transmit updates. To
better understand this phenomenon, further investigation of the compression algorithms is
required, but is beyond the scope of this analysis.

Compared to the previous section, this represents a more typical replication case that
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occurs during normal ledger operation. In general, the reduction in update size varies consid-
erably and is sometimes only slight, while in other cases it is almost halved. The fluctuation
in gain is expected because the evaluation is based on real-world transactions that are not
homogeneous. In both implementations of the GOC-Ledger, the size of the resulting update
depends heavily on the performed token operation and the accounts involved. As explained
in Section 5.6, performing a create or burn operation results in a smaller update than the
giveTo or ackFrom operation because only one tree and one blob object are modified. In
the latter case, two tree objects and one blob object are generated. Furthermore, the size of
the resulting tree objects that represent the giveTo and ackFrom fields of the account state
in the state-based approach, highly depends on the account on which the token operation
was executed. If the account has already given tokens to or acknowledged tokens from many
other different accounts, these trees will contain more entries than an account that has not
yet performed any transactions, resulting in larger updates. Additionally, Git does not need
to resend already existing objects that can be reused in new account states, which impacts
the total update size. This is discussed in Section 6.2.3. Therefore, in scenarios where the
update sizes of the state-based and δ-based versions are nearly equal, most of the create
or burn operations or giveTo and ackFrom operations are executed on accounts with trans-
actions with few other accounts. The δ-based approach is particularly advantageous when
performing giveTo or ackFrom operations on account states that contain numerous entries
in the ackFrom or giveTo dictionary. In such cases, there is no need to include all associated
account IDs in the tree objects, which leads to a more concise representation of the current
state and therefore results in a significant reduction in update size.

The results of the linear regression indicate that the reduction in update size of the
delta-based implementation compared to the state-based version increases with the number
of executed token operations. This suggests that the delta-based implementation scales
significantly better with incremental updates than the state-based version, which is also
confirmed by the measurement results of the total bundle file in Section 6.2.1. However,
as the coefficient of determination for the linear regression used is only around 0.35, we
cannot determine if the curve generated by the regression will maintain the same gradient
if additional token operations are performed.

6.2.3 Effectiveness of Git Default Compression and object-based architecture
This section presents the measurement results on the compression and object reuse of Git,
analyzing how these properties impact the size of replicated update messages.

Figure 6.6 displays the size of the repository, which only includes uncompressed objects.
Only objects that are important for the ledger state are taken into account, but local ob-
jects such as checkpoints are not included in the measurements. The repository size of the
two versions does not differ during the initialization and token creation phase. But the
δ-based implementation results in a smaller overall repository size than the state-based ap-
proach when simulating transactions. This difference increases as more token operations are
executed.

The size reduction achieved by compressing the Git objects and references into a bundle
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Figure 6.6: Repository size with uncompressed objects.

file (see Figure 6.1) instead of storing them uncompressed in the repository is shown in
Figure 6.7. At the beginning of the simulation, the size reduction by the bundle file is
extremely high. The measurement at zero token operations is not included in this graph,
because it results in a reduction of around 13000% and thus this outlier would distort further
analysis. Overall, there is always a compression gain in both implementations of the GOC-
Ledger. In the initialization and creation phases, the size reduction is smaller. But in the
transaction phase, the compression factor increases from 122% at the beginning to almost
600% at the end of the simulation. Until 13000 token operations, the compression used by
Git achieves the same size reduction. Between 13000 and 32000, the Git compression then
leads to a higher reduction factor for the state-based implementation than for the δ-based
version. However, this difference decreases with the number of token operations. At the end
of the simulation, starting from 32000 token operations, the δ-based bundle file archives a
slightly better compression compared to the state-based file.

Figure 6.7: Compression factor of Git bundle file.

To investigate to what extent the GOC-Ledger implementations benefit from reusing
already existing Git objects from previous states, Figure 6.8 compares the actual total size
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of Git objects against a naive approach in which all objects of a new commit must be
resent, even if they already exist. Figure 6.8(a) compares the total size of tree objects of
both versions against a corresponding naive replication approach. A similar behavior as in
Figure 6.2 can be observed. The tree size in the state-based version is always equal to or
larger than the tree objects in the delta approach. The naive implementations are always
equal to or larger than the actual measured size. In the delta implementation, the naive
approach is almost always equal to the actual size throughout the simulation. However,
in the state-based implementation, the size of the trees begins to deviate from the naive
approach after 14000 token operations. This difference gradually grows as the number of
executed token operations increases.

Figure 6.8(b) focuses on the size of the blob objects. The graph clearly shows that the
total blob size of the naive approach is considerably larger in both versions. Although in the
normal implementation the blob size is negligible compared to the other objects, the total
size of blob objects in the naive representation is larger than the naive tree object size. The
naive blob size of both state-based and δ-based versions is equal up to around 14000 token
operations. After that, however, the two naive versions begin to differ, and the difference
grows significantly with the number of token operations. The size of the naive state-based
tree grows almost linearly with the number of operations, increasing much faster than the
δ-based naive tree size. By the end of the simulation, the δ-based total naive blob size
achieves a size reduction of 81% compared to the naive state-based approach.

(a) Tree objects (b) Blob objects

Figure 6.8: Size of blob and tree objects compared to a naive approach.

6.2.3.1 Discussion

The results indicate that both the state-based and δ-based versions significantly benefit from
Git’s compression method. Besides the large peak of the compression rate at the beginning,
it can be observed that the compression rate achieved during the initialization and creation
phases is relatively low compared to the rates achieved during the transaction phase. This
means that in the initial phases, when data is mainly stored as commit messages, the
compression leads to a comparatively low size reduction (see Figure 6.7). However, when
transactions are simulated, the compression rate increases significantly, indicating that data
stored in Git objects may be compressed more efficiently. Additionally, Git’s compression
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of updates that are sent to other replicas also includes delta compression. Figure 6.3(a)
shows that Git delta-objects could be identified during the transaction phase, which further
increases the compression ratio. Overall, both implementations benefit almost equally from
the compression and the compression rate increases with the number of executed token
operations. At the end of the simulation, the δ-based implementation begins to benefit
slightly more from the compression than the state-based version. But more experiments
with additional transactions are necessary to determine whether this trend will continue.
The outliers at the beginning of the simulation are caused by the memory overhead of the
repository directory structure, which does not affect the compressed bundle file and thus
leads to extremely high size reduction factors. However, this overhead is static and therefore
becomes insignificant compared to the size of the actual data when more token operations
are executed. The efficient compression of Git objects is not only important for reducing
the message size transmitted between replicas, but also for the local memory overhead.
Git performs periodic maintenance on the local repository, which includes the compression
of objects in a similar way to bundle files. This reduces the local memory footprint and
improves the performance for accessing Git objects.

In addition to compression, Git offers further advantages, as it reuses exiting objects
and only transmits missing objects to other replicas due to its reference system and object-
oriented structure. The graphs in Figure 6.8 demonstrate that both the state-based and
delta-based GOC-Ledger implementations benefit from this optimization. The impact of
reusing tree objects is minimal in the state-based version, while the delta-based implemen-
tation shows no difference in the tree size of the naive approach. For a tree to be reused
in the delta implementation, either at least two different giveTo operations to the same
recipient must result in the same giveTo counter for that identifier, or multiple operations
must acknowledge tokens from the same sender, resulting in the same ackFrom counter value
for that sender ID. The probability that such scenarios occur in real-world transactions is
very low, thus the simulation could not reveal any benefits for the δ-based approach. How-
ever, the reuse of blob objects is crucial for reducing the overall state size for both versions.
The state-based implementation benefits significantly more from the reuse of blobs than
the δ-based implementation. This behavior is expected because the state-based approach
contains full states that encompass all different grow-only counters as blobs. As only the
hash of the blob that contains the modified counter value changes, it is the only blob object
that is sent to other replicas. This shows that Git needs to replicate far fewer blob objects
than a naive implementation by referencing already existing objects via their hash. Because
all delta states in the implementation only contain exactly one modified counter value, the
difference between the naive delta blob size and the actual size indicates that there must
exist collisions of counter values between different states. Consequently, different operations
result in the same counter value for various fields. The same blob object is thus referenced
multiple times, but only needs to be transmitted once. This further reduces the size of
update messages that are replicated between replicas.

The total size of blob objects is almost ten times smaller than the size of trees. This
means that reusing tree objects has a larger impact on optimizing the message sizes than
blobs. However, the difference between the naive tree object size and the tree size of the
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implementation is significantly smaller than the difference observed in blob objects. There-
fore, Git natively achieves an average message size reduction of 24% in the state-based
implementation compared to a naive approach.

To summarize, these observations demonstrate that Git’s optimizations, which are based
on object compression and reuse of objects, have a significant impact on the overall ledger
state size of both the δ-based and state-based implementations. Although the compression
rate is almost equal in both versions, the state-based version benefits significantly more from
the object-oriented structure of Git. By only referencing the hash of the blob that contains
the corresponding counter value, unmodified counter values do not need to be transferred
again. This indicates that Git provides a similar optimization to the Delta-State Replicated
Data Types for state-based CRDTs, which are implemented in a similar data structure
as presented in Section 5.6. However, the tree objects of the state-based implementation
still need to reference all blobs for each counter value, resulting in considerably larger tree
objects. Therefore, the δ-based implementation still reduces the communication overhead
significantly and scales better with the number of token operations.
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Related Work

In this section, existing research projects and literature related to this thesis are presented
and reviewed. To the best of our knowledge and based on the review of CRDT.tech [14],
which provides a list of research publications on CRDTs, the δ-GOC-Ledger is the first
known consensus-free replicated ledger based on Delta-State Replicated Datatypes.

Conflict-free Replicated Data Types is a current method of replicating data among peers
that relies on eventual consistency without the need for consensus [28]. The δ-based CRDT
represents a novel approach to optimize state-based CRDTs and is still part of active research
[2]. In general, there exists significantly fewer applications based on δ-CRDTs than on
state- or operation-based CRDTs. Nevertheless, a few industry applications support δ-
based CRDTs, such as AKKA, a toolkit that facilitates the development of concurrent,
distributed and fault-tolerant applications that implement various known CRDT datatypes
[1]. IPFS, a protocol for sharing information in a decentralized way, also supports δ-CRDTs
for distributing key-value stores among replicas [3, 12]. Most of the recent research in this
area has focused on supporting JSON by combining multiple δ-based CRDTs [4, 25]. But
there exists no known consensus-free replicated ledger based on δ-CRDTs. Therefore, the
main focus of this thesis lies on the design of δ-based CRDTs in the domain of financial
token systems, as well as evaluating its benefits compared to a state-based version.

The implemented append-only log per author and token type is inspired by the feeds
used in Secure Scuttlebutt (SSB) [31], a decentralized peer-to-peer communication protocol.
In SSB, each author has an append-only log to which new messages can be appended. The
properties of the log ensure that messages cannot be subsequently modified by signing new
log entries and containing the cryptographic hash of the previous message. In this way, each
replica can trust the messages in the author’s log up to the latest replicated message.

∆-CRDT is an extension of δ-CRDT that further optimizes the state size replicated
between peers. Usually with the δ-CRDT approach, the replicas need to periodically send
their full state, similar to the state-based approach. This ensures that replicas that have not
synchronized any updates for a longer period of time still converge, as the new delta states
may not include older changes. To optimize this process, in the ∆-CRDTs, all replicas
maintain the current version of their local state using a logical clock, called the version
vector. During the replication process, the replicas compare each other’s version vectors
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to determine the minimal delta state that needs to be transmitted. As a result, only this
single delta state is then sent to the other replica instead of the entire local state, thereby
decreasing the size of the transmitted message. In order to compute this minimal delta state,
additional metadata needs to be maintained, which grows over time. Therefore, this data
is removed periodically, with the risk that a replica may not be able to send this minimal
delta anymore and must resend the full state, as in state-based CRDTs. This approach
is similar to the replication process presented in Section 5.4. The references serve as a
version vector pointing to the last known local state of the replica, also called frontiers.
The parent-child relationship of the commits, stored as a hash graph [13], represents the
causal history [26] of the delta states. Git’s reconciliation protocol then compares the local
frontier with the remote frontier, i.e. computes the difference between both states and
only replicates missing commits. Although git compresses these objects as efficiently as
possible, unlike the ∆-CRDT, this approach transmits all missing delta states but does not
combine them into a single minimal state. A similar approach could be added to the Git
implementation of the δ-GOC-Ledger, where the required delta states are merged into a
single delta state that represents the minimal needed state between the replicas. However,
if only such deltas instead of the entire delta state history were transmitted, the immutable,
self-certifying append-only-log per account would no longer be consistent, resulting in an
interrupted chain of trust, which would be crucial for financial transactions as in the GOC-
Ledger. The same scenario would occur if all data related to the causal history of delta
states were removed without additional mechanisms.

At the time of writing, there are no known implementations of consensus-free replicated
ledgers using Git, probably because the main use case for Git is to provide a multi-user
version control system for files. Additionally, we could not find any implementations of
δ-based CRDTs build on Git. But there are some applications that rely on Git and its
reconciliation protocol to implement decentralized peer-to-peer systems. One example is
Radicle [32], an open-source, peer-to-peer code collaboration stack built on Git. It uses a
similar referencing and message signing technique, as described in Section 5.3, to achieve
trust through self-certification. Additionally, all modifications are stored as commits, or-
dered as a directed acyclic graph, similar to the presented Git implementation. This graph
is then partially ordered and concurrent states are merged consistently across all replicas,
leading to a similar data structure as state-based CRDTs. However, the documentation
does not specify the implemented merge function, nor does it validate the properties of this
function. In Radicle there exist also possible cases where no merge function can be applied,
leading to a conflict that must be resolved by the user, thus contradicting the principle of
CRDTs. Our Git implementation of the δ-GOC ledger has instead proven convergence and
liveness properties. It also explores how the data structure of a CRDT can be mapped to
Git objects and quantifies the efficiency of this approach.

Another application is the Git implementation of the 2P-BFT-Log [17], which provides an
eventually consistent append-only log, even in the presence of forks of Byzantine processes.
It also implements the properties of self-certifying branches in a similar way as the presented
implementation. Additionally, it is one of the first implementations of state-based CRDTs,
which are proven to converge. However, the implementation transfers data via commit
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messages and does not encode the information as blob or tree objects. The implementations
of this thesis, in contrast, represent states as a composition of blobs and trees, which allows
us to explore the efficency of representing CRDT states as Git objects. Furthermore, this
approach is evaluated to quantify the size of data transmitted between replicas.
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Conclusion

This thesis introduces the δ-GOC-Ledger, a consensus-free replicated ledger based on Delta-
State Replicated Datatypes. This approach reduces the communication overhead when
replicating data compared to the original state-based version and at the same time guaran-
tees that eventual convergence is achieved even on unreliable communication channels. We
provided a strong formal foundation by proving all properties and showed how the delta-
based CRDT results in the same full state as in the state-based version, thereby inheriting
the same properties. To compare the two approaches, we built prototypes using Git for both
the state-based and δ-based versions and simulated real-world transactions. By analyzing
the message sizes during the simulation, we discovered that implementing the state-based
GOC-Ledger using Git achieves an average size reduction of 24% compared to a naive im-
plementation. However, implementing the Delta-GOC-Ledger reduces the message sizes by
an additional 10-30%. Therefore, the δ-based ledger significantly reduces the message sizes
that need to be replicated, especially when the number of transactions grows. In addition,
we discovered that Git may be a promising tool for implementing CRDTs with a similar
design as the GOC-Ledger due to its compression and reconciliation algorithms. However,
we also highlighted the limitations of the data representation using Git tree objects.

Since the δ-GOC-Ledger leads to smaller overall message sizes, it offers a substantial im-
provement in scalability compared to the existing state-based design, especially for systems
with a high number of transactions and participants. Therefore, the δ-GOC-Ledger pro-
vides a strong foundation for future practical applications of the GOC-Ledger on real-world
peer-to-peer systems.

8.1 Future Work
This thesis provides a foundation for further research. In the following, interesting ideas for
future work are presented.
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8.1.1 Git performance optimization
The implementation presented is an initial prototype of the δ-GOC-Ledger based on Git,
which has the potential to be further optimized. The evaluation of the implementation
revealed that the current approach of representing states as a composition of Git tree and
blob objects has certain benefits (see Section 6.2.3), but we could also observe that the
scalability of the system is limited due to the increasing size of the tree objects. Therefore,
other ways of storing state information with Git can be explored and evaluated to overcome
this limitation. One approach could be to encode the delta-state information as a Git commit
message instead of relying on tree objects. Additionally, the commits contain metadata that
is redundant. For example, it is obvious that the commits within one append-only log are
created by the same author and signed by the same cryptographic key. Similar optimizations
as used in tinySSB [29], where several metadata of a log entry is derived from its context,
could be implemented to further reduce the message sizes transmitted between replicas.
Further methods for truncating the commit history can also be explored to reduce local
memory footprint and facilitate onboarding.

8.1.2 Adversarial Environments
The presented prototype of the δ-GOC-ledger currently does not support adversarial be-
havior in the form of concurrent delta states from one author, i.e. forking of the author’s
append-only log of a token type. In such cases, other replicas will stay on the first received
branch of the fork and will ignore any updates on other branches. This behavior is also seen
in other replicated systems based on append-only logs such as Secure Scuttlebutt [31], but
in untrusted peer-to-peer systems, such Byzantine behavior cannot be prevented. However,
the underlying δ-GOC-Ledger design supports concurrent states. Therefore, the current im-
plementation could be extended by additional methods to detect and handle forking. One
approach could be the implementation of the 2P-BFT-Log [17], which provides eventual
consistent append-only logs, even in the presence of forks. However, if a fork in the log is
detected, it could cause fork-based double-spending. The solution to such scenarios in the
context of local crypto-tokens is still an open research question.
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A
Notation

In addition to the common mathematical conventions, we use the following notation to
improve the readability and comprehensibility of our algorithms and proofs.

• A represents a full account state as described in [18], which includes several at-
tributes denoted as subscript:

– Aid: the identifier of the account.

– A↑: the number of tokens created

– A↓: the amount of tokens burned

– A←: a dictionary, where A←[id] is the number of tokens received by id

– A→: a dictionary, where A→[id] is the number of tokens transferred to id

• Aδ represents a delta account state, resulting from the application of a delta-mutator
on a full account state or by joining several delta states. It can contain the same
attributes as full account states and is denoted with the same subscript. When trying
to access an attribute that is not included in the delta account state, the default value
defined in Table 3.1 is implicitly returned.

• To access a value stored in a dictionary D, it can be retrieved by accessing the
corresponding key, written as D[key]. The set of included keys is denoted as D∗. An
empty dictionary is written as {} or D∗ = ∅.

• variable← value: this represents a variable assignment. The variable name on the
left-hand side is assigned a new value from the expression on the right-hand side.
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