
Master Thesis

Supervised by: Author:
Dr. Erick Lavoie Tim Matter
Prof. Christian Tschudin

Modelling and Implementing
the ”Catan” Boardgame as a
Replicated State Machine for

Peer-to-Peer Systems

30th May 2025

Acknowledgements

For the opportunity to work on this thesis, I would like to thank Prof. Dr. Christian
Tschudin and Dr. Erick Lavoie. I want to thank Dr. Erick Lavoie in particular, his
expertise and support helped me tackle this thesis. He provided insights, constructive
feedback throughout this project and motivated me to keep working.

In the creation of this thesis, ChatGPT was only used as a search engine, to look
up papers, code examples, and definitions. All the text was written by hand and no
graphics or images were generated by AI.

i

Abstract

Creating peer-to-peer applications is challenging, since all peers replicate the applica-
tion’s whole state and must provide eventual convergence of the state, despite trans-
mission delays and network partitions. This challenge encourages programmers to
clearly specify their algorithm’s properties. However, peer-to-peer platforms today only
provide informal English specifications regarding their distributed behaviour, which re-
quires programmers to have a deep understanding of the specific platform to predict
their behaviour for specific applications. New developments over the last decades in-
troduced new tools to help writing formal specifications. One such example is TLA+
and its model checker TLC, which provide an accessible approach to formal modelling.

In this thesis, we showcase this formal approach by modelling and implementing
the multi-player board game ”Catan”. We develop the first TLA+ peer-to-peer specifi-
cation for ”Catan” and present it in detail. We then use the specification as a blueprint
to implement a peer-to-peer version of ”Catan” in Python. To replicate the state be-
tween peers, we use single-writer append-only logs, implemented using Git commits
and references (branches).

We discuss the advantages of creating TLA+ specifications and using Git as the
underlying tool for state replication. We additionally provide performance metrics of our
implementation, that may serve as comparison for implementations of ”Catan” on other
combinations of programming language and peer-to-peer platforms in the future.

Our experience highlighted that modelling facilitated communication about and de-
bugging of the expected behaviour of the application during the prototyping stage. We
also noticed we could better focus on aspects not covered by the model during the
implementation. Given this experience, we believe explicitly modelling the behaviour of
peer-to-peer applications is quite promising for improving the reliability of peer-to-peer
applications and improving the productivity of peer-to-peer developers in the future.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Background 3
2.1 Core Mechanics of Settlers of Catan . 3

2.1.1 Resources and Building . 4
2.1.2 Trade . 6
2.1.3 Game Setup . 6

2.2 Hexagonal Efficient Coordinate System 6
2.3 Append-only logs . 7
2.4 State machines . 7
2.5 TLA+ and TLC . 8

2.5.1 TLA+ Notation . 8
2.5.2 Example . 9

3 Model 11
3.1 Physical Game State . 11

3.1.1 Overview . 11
3.1.2 Player Buildings and Hands . 12

3.2 TLA+ Model . 13
3.2.1 Running Example . 13
3.2.2 Immutable Definitions . 13
3.2.3 State Machine Overview . 17
3.2.4 Game State . 17
3.2.5 Invariants . 22
3.2.6 Initial State . 23
3.2.7 Actions . 23

4 Implementation 30
4.1 Libraries . 30
4.2 Game State . 30

4.2.1 Representation . 30
4.2.2 Git Branches and Commits Structure 30
4.2.3 Modifying and Synchronizing . 31
4.2.4 Interface Files/Code . 32

iii

5 Evaluation 33
5.1 Metrics . 33

5.1.1 Methodology . 33
5.1.2 Simulation . 34
5.1.3 Measurements . 34
5.1.4 Results . 35

5.2 Correctness . 38
5.2.1 Methodology . 38
5.2.2 TLA+ . 38
5.2.3 Simulations . 38

6 Related Work 40
6.1 TLA+ . 40
6.2 Catan implementations . 40
6.3 Formalized Games . 41
6.4 Git-based Applications using Append-Only Logs 41

7 Conclusion 42
7.1 Insights of the Development Methodology 42

7.1.1 Working with TLA+ . 42
7.1.2 Git . 43

7.2 Future Work . 43
7.3 Perspectives . 44

Bibliography 44

A TLA+ Specification and TLC settings 48

B Game Rules 70

List of Figures

2.1 Default Map of Catan . 4
2.2 Game Pieces of one Player . 4
2.3 Resource generation . 5
2.4 Building rules . 5
2.5 Coordinate example . 6
2.6 Small state machine example . 7
2.7 TLA+ State Graph . 10

3.1 Representation of a two-player game 11
3.2 Game pieces and cards . 12
3.3 Cut-out of the default map . 13
3.4 Map tiles Encoding Example . 15
3.5 State machine of Catan . 17
3.6 Settlement points (red) and road points (orange) 20
3.7 Settlement Points Example . 20
3.8 Road points example . 21

4.1 Folder structure representing complete game state 31
4.2 Modified Files . 32

5.1 Machine specifications . 33
5.2 Needed Storage Space of ”Catan” simulations 35
5.3 Histograms of Git commit deltas . 36
5.4 Elapsed time of two- and four-player simulations 37
5.5 Local synchronization impact on elapsed time per commit 37

v

Chapter 1

Introduction

Developing applications in peer-to-peer systems poses multiple challenges to develop-
ers. Each peer replicates the whole state of the program and all peers must eventually
converge the same state, even if there are transmission delays between peers, or the
network partitions due to machine failures or outages [2]. To ensure that the state
converges, it is useful for programmers to have a clear specification of what the peer-
to-peer system provides and what behaviour is expected. Especially when replicas can
be out of sync temporarily.

Nowadays, there exist many peer-to-peer platforms, for example Secure-Scuttlebutt
(SSB) [26], TinySSB [32], and P2Panda [20]. These platforms have been created to
ease the burden on developers and make peer-to-peer application development more
approachable. However, they usually have specifications stated in English [25, 29, 21].
This leaves room for interpretation about the platforms behaviours, requirements and
assumptions, which are needed to create applications on these platforms. This makes
it hard to compare these systems and can lead to surprises during development, since
it is hard to see in advance, if a specific peer-to-peer platform is the most suitable for a
task or not.

In contrast to these English specifications, the software verification community [14,
15] and Leslie Lamport in particular [8, 7, 31] have been developing tools to help reason
about the correctness of concurrent programs. They do this by modelling them as
state machines and describing those with discrete mathematics and first-order logic.
Usually, to be able to use tools of that category [1, 18, 19], developers need a deep
understanding of the tools themselves and mathematics. Developments over the past
decades brought forth TLA+ [9] and an accompanying model checker TLC [35], which
provide a lower barrier to entry into formal modelling.

In this thesis, we report on the development of a peer-to-peer application, that com-
bines a mathematical specification and a corresponding implementation built on an
eventually-consistent peer-to-peer replication platform. As a case study, we model the
application logic of the multi-player board game ”Catan”, and later implement it using
the Git version control system as our replication platform, exploiting its in-built primitives
and efficient protocols.

Stating the program logic with the help of TLA+ has several advantages. First it im-
proves upon an English specification by clearly specifying properties with mathematics,
abstracting complexity and system specific traits. Second, the TLA+ model allows for
a quick verification of peer-to-peer platform requirements to check if an application is
compatible or not. Third, it is a high-level guideline for the application’s implementation.
This helps developers concentrate on the chosen platform and language quirks instead
of needing to think about the application logic.

We represent the execution of the state machine of ”Catan” using replicated single-
writer append-only logs [5]. We chose them because they are eventually consistent, en-

1

2

sure sequential ordering of messages, and can take any type of payload. The append-
only logs are implemented as Git branches. Each player has a dedicated branch and
each commit represents an action by a player. The parent relation between commits
represents the causality between actions. The state of the application after each action
is represented as a directory of files saved in the corresponding commit.

Using Git to implement the application has several advantages: Git has been in
constant development for several decades and has been used by millions of develop-
ers, which made it reliable and efficient. Git provides many tools for state recovery and
inquiries on the commit histories. Most integrated development editors (IDE) provide
tools for improved debugging and there are multiple sophisticated libraries for different
programming languages that can interact with Git repositories.

Our original contributions with this thesis are three-fold. First, we provide the first
formal specification of the ”Catan” board game with TLA+. Second, our implementation
of ”Catan” is the first to use Git as a replication platform, and is the only one that we
know of that is peer-to-peer. Third, we provide performance metrics related to stor-
age, size of updates during replication, and the incurred latency of synchronization, to
serve as comparisons for future implementations on other peer-to-peer and centralized
platforms.

The thesis is organized as follows: We introduce important concepts in Chapter 2,
the physical game state of ”Catan” and our TLA+ model in Chapter 3, the implementa-
tion of that model in Python in Chapter 4, the evaluation of our model and implementa-
tion in Chapter 5, work related to our thesis in Chapter 6, and finally our conclusion of
this project in Chapter 7. In the appendix are the full TLA+ model A and the rulebook
for ”Catan” B.

Chapter 2

Background

In this chapter, we introduce the basics of ”Catan”, the hexagonal efficient coordinate
system, append-only logs, state machines and how we use TLA+ and TLC to represent
them.

2.1 Core Mechanics of Settlers of Catan

In this section, we first give an overview of what ”Catan” is about, then we introduce its
two main mechanics.

The winning condition of the board game is to reach ten victory points. These can
be earned by building villages or cities, buying victory point cards, and building the
longest road or having the biggest army. To achieve that, a player must spend resource
cards, which are earned by villages and cities, or procured via trade.

All of this happens on a board that is made out of hexagonal pieces, arranged
as shown in Figure 2.1. Each tile has one of five resource types, or is the desert
centrepiece which yields no resource. Edge tiles may have a port for better trading
opportunities.

Players take turns acting upon the board, we call the player that currently takes
action the active player. The active player first rolls the die, trades, and then may build,
as long as resources are available. The active player’s turn ends after the building
phase. Now, we present in deeper detail how the resource and trading mechanics
work.

3

4 2.1. Core Mechanics of Settlers of Catan

Figure 2.1: Default Map of Catan

2.1.1 Resources and Building

As mentioned above, gathering resources and building villages and cities is one of the
cornerstones of ”Catan”, since the winning condition can only be reached by building.
A player has a limited amount of buildings, as shown in Figure 2.2: each player has
five villages, four cities, and 15 streets. A village earns the player one point, a city two
points and streets are needed to expand to build more settlements. These buildings
can be built using the five resources of the game, namely, lumber (dark green), brick
(brown), wool (light green), grain (yellow) and ore (grey).

Figure 2.2: Game Pieces of one Player

Each turn, the current player rolls two dice and their sum determines which fields
produce resources that turn, namely all that have a matching number to the dice sum.
The amount produced for each player depends on the number of villages or cities they
have adjacent to a resource tile with the rolled number.

Let us take a look at the example in Figure 2.3 and assume a ten was rolled. There

5 2.1. Core Mechanics of Settlers of Catan

is one field with a ten and it has a village of the red player adjacent to it. This would
earn the red player one ore card. If a six were to be rolled, the red player would gain
one brick from the village and two bricks from the city. This implies that the placement
of settlements is paramount to optimize resource gain.

Figure 2.3: Resource generation

There are certain rules to building. First, each village has at least one street at-
tached to it. Second, to further build villages, an edge distance of two between player
villages or cities needs to be fulfilled. In Figure 2.4 (left, at the top), we see an example
of a viable building spot marked with a circle, because it is connected by roads and
is two roads away from an existing settlement. In the same figure (left, on the right),
we see an example of a settlement point blocked by the green player, marked by a
cross, because the green player has a settlement that is only one edge away. Third, to
build cities, a player already needs a village, the city then replaces the village. Fourth,
streets can be built up to an enemy player’s buildings and in case of gaps in between
enemy streets, as long as the two-edge-gap-rule is adhered to, allows a player to place
a village in between them as shown in Figure 2.4 on the right. This means that a player
can deny another player from building by placing a settlement in the same spot or one
edge away.

Figure 2.4: Building rules

6 2.2. Hexagonal Efficient Coordinate System

2.1.2 Trade

Another core component of the board game is trading. There are two different ways to
trade.

The first is to trade with the bank at a fixed exchange rate. The higher number of
resources in the exchange must be of the same type. The default rate to trade with the
bank four to one, unless the player has a settlement adjacent to a port. A Port enables
the player to trade three to one with the bank or two to one with a specific resource
type.

The second is to ask other players to trade. The active player can initiate trade with
everyone. The other players however can only initiate trade with the active player. The
rate at which the players trade is open but it is prohibited to gift resources.

2.1.3 Game Setup

After a party of players is established, the game enters its setup phase. The setup
phase has two rounds.

In the first round, each player throws the two dice and the player with the highest
sum wins, in case of a draw the players in question roll again. The winner begins
by placing a village on any vertex of the board and a street adjacent to it. Then in
counter-clockwise fashion, the other players do the same up to the last player.

Now round two begins with the last player. This means the last player can place two
villages and two streets at once, balancing the bad luck of the dice roll. The direction
turns to clockwise and the other players finish by placing their second village until we
are back at the player that initiated the first round. Every player gets resources from all
fields adjacent to their second village. From here on out, the game is set up and we
enter the turn cycles. A turn consists of a dice roll, trading and building.

2.2 Hexagonal Efficient Coordinate System

The Hexagonal Efficient Coordinate System (HECS) [24] is a coordinate system for
hexagonal grids. We use it to give our map tiles their coordinates. A HECS coordinate
is a tuple (a, r, c) ∈ {0,1} × � × �. This gives us an array, a row and a column
per tuple. Rows that vertically align are in the same array. In Figure 2.5 we can see an
example of HECS being used. The top and bottom row are in array 0, the middle row is
in array 1. Within the same array, the row and column work as in a standard Cartesian
coordinate system.

Figure 2.5: Coordinate example

7 2.3. Append-only logs

2.3 Append-only logs

Append-only logs are a data structure that are often used in decentralized systems due
to the following properties [10, 32]: 1) New data can only be appended, i.e. added
at the end of the data structure, giving it a chronological ordering of messages added
to its structure; 2) Once data is appended, it cannot be deleted or altered in any way,
it becomes immutable. These two characteristics make append-only logs very helpful
for replication and reconstruction with other peers. Since the data cannot be altered
after being added, both peers need to have the same sequence of the same log. If one
sequence is longer than the other, the shorter sequence is in need of an update.

Single-writer append-only logs are logs where only one author has access to writing
rights for a log. Others can still help replicate that log. An example of this is the com-
munication algorithm of Secure Scuttlebutt (SSB) [5], where single-writer append-only
logs are used in a gossip algorithm to facilitate message exchange between members
of a social network. To prevent an author from tampering with the messages of another
author, all messages are signed with a private key and they include the cryptographic
hash and signature of the previous message. This allows authors to check if the mes-
sage is indeed from the correct user.

2.4 State machines

State machines are a common tool in computer science to represent programs and
to make it easier to reason about their properties. We give a simple example of a
state machine in Figure 2.6. For all the following formalisms we will use the notation of
Lamport [8] to explain the example shown in Figure 2.6.

A state machine consists of: a set of states S = {s0, s1, s2}; a set of initial states
I = {s0} that is a subset of the possible states, i.e. I ⊆ S; a set of actions A =
{start(), end(), repeat()}; and a next-state relation N ⊆ S × A × S. In the example of
Figure 2.6, the next-states are: N = {⟨s0, start(), s1⟩, ⟨s1, repeat(), s1⟩, ⟨s1, end(), s2⟩}.

We only work with deterministic automata, which means each state s has at most
one element per action α in the next-state relation N where s is the current state in
the relation ⟨s, α, s′⟩ ∈ N . Deterministic state machines terminate or deadlock if they
reach a state that does not have a next-state relation to another state. If this end-state
is unexpected, this is considered a deadlock, otherwise this is considered a normal
termination.

Figure 2.6: Small state machine example

8 2.5. TLA+ and TLC

2.5 TLA+ and TLC

TLA+ is a language created by Leslie Lamport to formally describe complex concur-
rent systems [9] as state machines, using discrete mathematics and first-order logic.
Each TLA+ specification should have at least two things: 1) An initial state and 2) a
disjunction of all possible next steps. The TLA toolbox [6] helps creating these speci-
fications by providing an editor that uses the TLC model checker [35] to quickly verify
their behaviour during development. Additionally, TLC can check if safety and liveness
properties hold for a model by either traversing the whole state space or doing more
depth oriented simulation runs if the state space is too large.

2.5.1 TLA+ Notation

We introduce the basic TLA+ notations we will use in the rest of the thesis.

Notation 1 (Definition):
TLA+ uses ”≜” to introduce definitions, it means ”equal by definition”.

Notation 2 (Range):
An integer range is written as s..n, where s < n and s..n ≜ {i | s ≤ i ≤ n}.

Notation 3 (Tuples):
Tuples are written as <<f1,...,fn>> and accessed with an index starting at one. A
Tuple T ≜ <<f1,...,fn>> will return fi if we access T[i], i ∈ 1..n.

Notation 4 (Cardinality):
We retrieve the cardinality of a set S and a tuple T using Cardinality(S) and Len(T)
respectively.

Notation 5 (Records):
A TLA+ record is similar to a dictionary in Python: We define field names and
through those names, we can access the values of the record. To assign a value we
use the ”maps-to” operator ”|->”, e.g.: [arr |-> 0, row |-> 1, col |-> 2]. To access a
field, we use the name of the record, in this case ”coords” and write coords.arr, the
dot denotes an access to a local field of the record.

Notation 6 (DOMAIN):
The DOMAIN operator returns all the field keys of a record as a set. Given a record
R ≜ [arr |-> 0, row |-> 1, col |-> 2], DOMAIN R ≜ {”arr”, ”row”, ”col”}.

Notation 7 (TLA+ Constants):
TLA+ constants are either declared with the CONSTANTS keyword and assigned
with an unspecified value, guaranteed to be unique, or are operators without param-
eters with a definition (e.g. OP ≜ . . .). Constants are the immutable parameters of
the system.

Notation 8 (TLA+ Variables):
TLA+ variables are introduced using the VARIABLES keyword and are the mutable
parameters of the system. Variables are untyped but the values they may take is
constrained by writing an invariant that asserts the set of possible values.

9 2.5. TLA+ and TLC

Notation 9 (Primed Variables):
When writing an action (as an operator), we define the new state of a variable with
a prime. For example, to assert that the next state of a variable var will be equal
to 1, we write var′ = 1.

Notation 10 (EXCEPT):
The TLA+ EXCEPT operator is syntactic sugar to more concisely define a new
record in terms of an existing record by only specifying which fields and values are
different. If we take the record R from Notation 6 and want to change the row to 4
and col to 0 we write:

R’ = R EXCEPT !.row = 4
!.col = 0

To shorten formulas like incrementation, syntactic sugar using @ is introduced:
!.row = R.row + 1 ≜ !.row = @ + 1. The @ replaces the access formula to the
current field we are modifying.

2.5.2 Example

We now show an example of a TLA+ model that represents the state machine of Fig-
ure 2.6. We declare s0, s1, s2 as constants, add a variable state with the constraint
that it is one of the three states. We create the three actions start, repeat, and end,
which have the precondition, respectively, that state is equal to s0, s1, or s2. Start
changes state from s0, to s1, repeat leaves everything as is, and end changes state
from s1 to s2. We define the initial state as s0, and the next step function as the dis-
junction of the three actions. This leads to the code in Definition 1. By using TLC to run
the specification with visualization enabled, we get Figure 2.7.

Definition 1 (Small State Machine):
CONSTANTS s0,

s1,
s2

VARIABLES state
TypeOK ≜

state ∈ s0, s1, s2
start ≜
∧ state = s0
∧ state’ = s1

repeat ≜
∧ state = s1
∧ UNCHANGED(state)

end ≜
∧ state = s1
∧ state’ = s2

Init ≜ state = s0
Next ≜
∨ start
∨ repeat
∨ end

10 2.5. TLA+ and TLC

Figure 2.7: TLA+ State Graph

Chapter 3

Model

In this chapter, we specify a state machine that reflects the behaviour of a physical
game of ”Catan”. First, we give an informal description based on the state of the
physical board game when playing, as described in the rule set (appendix B). Then,
we show a mathematical model, that specifies all possible states of the game and valid
actions that players may perform based on any given state.

3.1 Physical Game State

3.1.1 Overview

Figure 3.1 shows an example of the state of a two-player game of ”Catan”. The game
board is set-up to reflect the standard map of ”Catan” previously shown in Figure 2.1.
The black game piece in the middle is the bandit, which prevents tiles from producing
resources, and players from building around the hexagon it is currently on. Each player
has their own unique colour for all game pieces. The pieces that were not used yet are
on the side of the board and already used pieces are on the board. Villages and cities
are placed on vertexes of the map, roads on edges.

Figure 3.1: Representation of a two-player game

11

12 3.1. Physical Game State

3.1.2 Player Buildings and Hands

We now take a closer look at the player pieces on the left side of the board, represented
in Figure 3.2. In terms of buildings, there are two villages, four cities and 12 roads left.
There are also several categories of cards. We have the resource cards, which are
used to buy buildings or development cards. The colour of the card represents the
resource type: Green is lumber, brown is brick, light green is wool, yellow is grain, and
grey is ore. The second category is the development cards, that we further split into
three different categories: 1) Cards that were bought in the current turn and cannot be
played yet (light gray). 2) Cards that were bought previously and are available to be
played (dark gray), and 3) Cards that have been played, which are either knights or
victory points. 1) and 2), as well as resource cards, are hidden from other players, 3)
is shown to all players, since they provide victory points. We do not consider privacy
in the rest of the thesis but still use the previous categories because they simplify the
specification of actions.

Figure 3.2: Game pieces and cards

13 3.2. TLA+ Model

3.2 TLA+ Model

In this section, we use TLA+ [9] to provide a mathematical model of the game as a
state machine. To create a state machine we need an initial state and a set of actions,
which can be taken, given some preconditions. To describe the actions and the initial
state, we need to encode all the information of the board game, this includes the map
layout, the game pieces, the cards, and all actions.

To make our model more approachable, we split our description into immutable and
mutable definitions. For example, the map layout never changes during the game, so
we consider it immutable, but a player may gain and loose cards, so we consider the
player hand mutable. We then describe the actions a player may take in any given
state of the game, based on both immutable and mutable definitions. The initial state
contains all state that is mutable and describes the board game before any action has
been taken.

In the next sections, we introduce the key concepts of our specification by highlight-
ing the most important parts. We omit the other parts, which follow easily from what
has been explained. The reader may refer to appendix A for the complete specification.

3.2.1 Running Example

Figure 3.3 shows the top left corner of the ”Catan” default map layout, previously shown
in Figure 2.1 that we will use throughout the chapter to provide examples. Figure 3.3
shows all elements we need to encode if we exclude the actions. This section of the
map covers all major elements of the game, including map tiles with different resources
and numbers, wharfs, and locations where players may place settlements and roads.

Figure 3.3: Cut-out of the default map

3.2.2 Immutable Definitions

We begin our presentation with immutable definitions (lines 4 to 248 in Appendix A).
All immutable definitions are either constants, introduced with the CONSTANT keyword,
or operators taking no argument, introduced with a definition, e.g. "OP ≜ . . . ". All
constants defined with the keyword, are assigned a model value when model-checking,
i.e. an unspecified value guaranteed to be unique.

14 3.2. TLA+ Model

Cards

We begin with all types of cards that are available in the game. There are two main
types of cards: Resource and development cards. We group card types in sets to make
actions easier to specify later. We also define pools that determine the total amount of
each type available during a game.

Resource cards have five types, one for each of the five resources in ”Catan”: Lum-
ber, Brick, Wool, Grain, and Ore. We represent them as constants.

Definition 2 (Resource Card Types):
RCT ≜ {Lumber, Brick, Wool, Grain, Ore}

Progress card types are defined as follows: Monopoly, Year-of-Plenty, and Road-
Building. Similar to resource card types, development card types are represented as
constants.

Definition 3 (Progress Card Types):
PCT ≜ {Monopoly, YearOfPlenty, RoadBuilding}

Development cards types consist of all progress cards types, to which we add
Knight, and VictoryPoint.

Definition 4 (Development Card Types):
DCT ≜ PCT ∪ {Knight, VictoryPoint}

There are 19 resource cards of each type available in a game of ”Catan”. We use
a tuple of counters to reflect the total of each card type available in the game. These
counters are later used in Invariant 1, to make sure all cards are persistently in the
game.

Definition 5 (Resource Card Pool):
RCP ≜ <<19, 19, 19, 19, 19>>

The available development cards are two Monopoly, two YearOfPlenty, two Road-
Building, 14 Knight, and five VictoryPoint cards. Similar to resource cards, the pool is
represented as an immutable tuple and serves as a reference for Invariant 2.

Definition 6 (Development Card Pool):
DCP ≜ <<2, 2, 2, 14, 5>>

We now define how many cards of each type can be bought and kept by a player.
We give a range from zero to the maximum amount of cards specified in the Devel-
opment Card Pool (Definition 6). We assume VictoryPoint cards are always unveiled
immediately upon buying, therefore we do not track them in the bought cards.

Definition 7 (Bought Cards Type):
BCT ≜ [Monopoly: 0..2, YearOfPlenty: 0..2, RoadBuilding: 0..2, Knight: 0..14]

Unveiled Cards are defined analogously to Definition 7 but only have the Knight and
VictoryPoint as fields.

Definition 8 (Unveiled Cards Type):
UCT ≜ [Knight: 0..14, VictoryPoint: 0..5]

The Map

To represent the map we encode the hexagonal tiles. They have six resource types:
⊥, Lumber, Brick, Wool, Grain, and Ore. The bottom (⊥) represents tiles that do not
generate resources, like water and desert tiles. Each tile has an integer n assigned
to it from two to 12, excluding seven. This number is used for resource generation
(see Section 2.1.1). To reflect the location of a tile, we use the Hexagonal Efficient

15 3.2. TLA+ Model

Coordinate System (see Section 2.2). The complete information for each tile is stored
in a TLA+ record, which provides a convenient syntax to define the sets of records:

Notation 11 (Set of Records):
TLA+ allows us to define a set of records, by using the notation: [card: S]. This
returns the set of distinct records, where the value associated to the label ”card” is
an element of S. For example, let S be the Resource Card Type Set(Definition 2).
This would result in: [card: S] ≜ {[card |-> Lumber], [card |-> Brick], [card |->Wool],
[card |-> Grain], [card |-> Ore]}.

The following defines the set of all valid records representing map tiles for Catan:

Definition 9 (Map Tiles):
MT ≜ [

coords: [arr: 0..1, row: Int, col: Int],
res: RCT ∪ {⊥},
n: 2..6 ∪ 8..12 ∪ {⊥}

]

A valid map is a subset of MT in which each tile has unique coordinates.

Definition 10 (Map):
M ⊆ MT ∧ (∀ t1,t2 ∈ M ∧ t1.coords = t2.coords ⇐⇒ t1 = t2)

Figure 3.4 shows examples of tiles. The grey tile is represented as follows: It has
the coordinates {1,0,2}, meaning it is in tile array one, in the zeroth row and first
column. Its resource type is Ore and its number is 10. It is represented as the follow-
ing record: [coords |-> {1, 0, 2}, res |-> Ore, n |-> 10], which for illustration
purposes we simplify as a tuple <<{1,0,1},Ore,10>> in the figure. Water tiles are
a special case, the water tile to the left of our ore tile is represented with the tuple:
<<{1,0,0},⊥,⊥>>. Both the type as well as the number are ⊥, since it does not
produce resources.

Figure 3.4: Map tiles Encoding Example

To distinguish all the port types on the map, we define ThreeToOne as a port usable
for all resources, which allows a player to trade three of the same resource type for
another resource card. For each resource type we add a wharf, that can trade only the
specific resource two to one.

16 3.2. TLA+ Model

Definition 11 (Wharf Types):
WT ≜ {ThreeToOne} ∪ RCT

We define W to be the set of all wharfs displayed on the default map shown in
Figure 2.1. Each element has coordinates that are part of the map, respectively the
two tiles that are adjacent and part of the coastline.

Definition 12 (Wharf):
W ≜ {[coords |-> {t1, t5},wt |-> ThreeToOne], ...}
∀w ∈ W: w.wt ∈ WT ∧ ∀t ∈ w.coords: t ∈ M
∀w ∈ W: ∃t1, t2 ∈ w.coords: isAdjacent(t1, t2) ∧ isCoast(t1, t2)

Board Game Pieces

We now define helpers for the game pieces that can be placed on the board. There are
two settlement types: Village and City, each represented as a constant.

Definition 13 (Settlement Types):
ST ≜ {Village, City}

Throughout the game, each player has access to a pool of 15 roads, five villages
and four cities. This pool is used later to verify Invariant 3.

Definition 14 (Player Building Pool):
BP ≜ <<15, 5, 4>>

Phases

At the beginning of ”Catan” there is a two-phase setup that takes place. Each phase is
represented as a constant.

Definition 15 (Setup Phases):
SUP ≜ {PhaseOne, PhaseTwo}

Each turn of the game, post-setup, is decomposed into phases. In addition, we
use ⊥ to represent that the game is in the setup phase and top (⊤) to represent that a
player has won the game. All are represented as constants.

Definition 16 (Turn Phases):
TP ≜ {⊥, DiceRoll, Trading, Building, ⊤}

17 3.2. TLA+ Model

3.2.3 State Machine Overview

We now present the mutable parts of the specification. This part is specified as a state
machine, for which we first provide an overview.

Our state machine is initialized with the state s0 later given in Definition 20. As
shown in Figure 3.5, each player goes through setup phase one and two, later pre-
sented in Actions 1, 2. After the setup, each step of the state machine follows the order
of the turn phases: DiceRoll, Trading and Building. Since a player may trade multiple
times in a turn, we write the state as S r,i, where r is the round and i the states index.
With a fixed r over all states, i is smaller than j and j is smaller than k. Previous rounds
always have lower state indexes than the later rounds and successor rounds always
have higher indexes than the previous ones. A player escapes the trading or building
loop by taking the empty trade or empty build action respectively. When a player fulfils
the victory condition while ending the building phase, the state machine terminates,
otherwise another round starts.

Figure 3.5: State machine of Catan

The next sections details the specifics of the states and actions.

3.2.4 Game State

In this section, we define all possible states as TLA+ variables. Unlike constants, vari-
ables may be changed by actions. We define what values are considered valid for each
variable, which is then checked by TLC and reported, should a value be outside the
specification. All the variable definitions can also be found in the appendix section A
from line 302 to line 338.

Setup

Before a game of ”Catan” begins, we need to establish who the players are and in
which order they play. A random order of all possible players is chosen and defined
as two global constants, one being a set and one being a tuple. The conditions on the
players are: 1) There must be at least two players and 2) there must not be more than
four players. The set Players will be used to check for membership and the tuple P will

18 3.2. TLA+ Model

be used to determine the order and ensure the correct choice of the next active player.

Definition 17 (Players):
PossiblePlayers ≜ {p1, p2, p3, p4}

Players ⊆ PossiblePlayers ∧ Cardinality(Players) ≥ 2
Let P be an arbitrary sequence of Players.

The setup state contains the current setup phase (one of the phases of Defini-
tion 15) and the active player, who is always one of the Players. In all later definitions
for actions (Section 3.2.7), only the active player is given permission to alter the state
of variables.

Definition 18 (Setup state):
SU ∈ [sup: SUP, ap: Players]

Game State (Proper)

The state of the game is a record, containing the active player, the state of: the bank,
the discard pile, the player hands, the types and number of unplaced player buildings,
the settlement and road points, the bandit, and the current turn phase. Possible val-
ues are defined below, where the set of all possible values for each component is an
operator taking no argument. By convention, we write each with capital letters.

Definition 19 (Game state):
G ∈ [ap: Players, bnk: BNK, dp: DP, h: H, b: B, s: S, r: R, ba: M, tp: TP]

We now describe in turn the possible states for the bank (BNK), the discard pile
(DP), the players’ hands (H), the unplaced player buildings (B), the settlement points
(S), the road points (R), the bandit (the set of all map tiles M), and the turn phase (T P).

The bank is a neutral entity that holds all the cards that are not in a player’s hand.
We represent that with a record of resources and development cards. At the beginning
of the game, the bank holds 19 resource cards of each type. The development cards
held are: two Monopoly, two YearOfPlenty, two RoadBuilding, 14 Knight, and five Vic-
toryPoint cards. As the game progresses and cards are obtained or bought by players,
the amount for each card type may decrease but can never be below zero.

Definition 19.1 (Bank):
BNK ≜ [

RC: [Lumber: 0..19, Brick: 0..19, Wool: 0..19, Grain: 0..19, Ore: 0..19],
DC: [Monopoly: 0..2, YearOfPlenty: 0..2, RoadBuilding: 0..2,
Knight: 0..14, VictoryPoint: 0..5]

]

The discard pile holds the played and discarded progress cards. It is represented as
a record with three fields, which can hold between zero and the maximum card amount
available in the Development Card Pool (Definition 6).

Definition 19.2 (Discard Pile):
DP ≜ [Monopoly: 0..2, YearOfPlenty: 0..2, RoadBuilding: 0..2]

The hand of a player consists of a record, which includes the resource cards (RC)
and the three development card sets that the player currently owns (DC): bought cards
(BC), available cards (AC), and unveiled cards (UC). BC and AC are members of the
set of records BCT (Definition 7) and UC is a member of UCT (Definition 8). All types
of cards follow the rule that a player must never have less than zero cards for each type
and no more than the total number of cards available in the game.

19 3.2. TLA+ Model

Definition 19.3 (Single Player Hand):
PH ≜ [

RC: [Lumber: 0..19, Brick: 0..19, Wool: 0..19, Grain: 0..19, Ore: 0..19],
DC: [
BC: BCT,
AC: BCT,
UC: UCT

]
]

TLA+ offers convenient syntax to define the set of all possible functions that map
values from one set to those of another set:

Notation 12 (Set of Functions):
The set of functions, written as [S -> T] is similar to the set of records (Notation 11),
but instead of having a single field, we now map a whole set of fields. Concretely,
the set of functions computes the Cartesian product of S and T, but instead of a
just sets, we get a set of sets of records. For example, let us assume S ≜ {p1, p2}
and T ≜ {0,1}. Then we would get:

[S -> T] ≜ {{[p1 |-> 0], [p2 |-> 0]},
{[p1 |-> 0], [p2 |-> 1]},
{[p1 |-> 1], [p2 |-> 0]},
{[p1 |-> 1], [p2 |-> 1]}}

We use the set of functions notation to represent the state of all possible player
hands by mapping each player to every possible Player Hand (PH). Note that PH (Def-
inition 19.3), is the hand for a single player and should not be confused with Player
Hands H, which holds all possible hands for all players, specifically the Cartesian prod-
uct of Players and PH.

Definition 19.4 (Player Hands):
H ≜ [Players -> PH]

Player Buildings is a record containing all buildings that a player has not placed yet.
Their minimal amount is zero and their maximal amount is constrained by the player
building pool (PB, Definition 14).

Definition 19.5 (Player Buildings):
PB ≜ [Road: 0..15, Village: 0..5, City: 0..4]

The set of all possible player buildings is represented as the Cartesian product of
Players and player buildings (PB).

Definition 19.6 (Buildings):
B ≜ [Players -> PB]

The Map

To represent pieces on the board, we use the points a player can build on. Since settle-
ments (villages and cities) cannot be built on the same points as roads, we differentiate
between settlement points and road points. In Figure 3.6 the settlement points are
shown in red and road points in orange.

As can be seen, settlement points are on the intersection of three hexagonal tiles,
that are all adjacent to each other and at least one of the three tiles is not water. These
coordinate triplets are unique and defined in the set CT (see Appendix A). Initially,
settlement points have no owner and no building, which we represent as ⊥ for both.
During the game, at most one player may place a village on a settlement point. Later the
same player may upgrade the village to a city. The settlement type (st) of a settlement

20 3.2. TLA+ Model

Figure 3.6: Settlement points (red) and road points (orange)

point is therefore either one of the settlement types (ST, Definition 13), or ⊥, and the
owner is either one of the players (Players, Definition 17) or ⊥.

Definition 19.7 (Settlement Points):
S ≜ [CT -> [own: Players ∪ {⊥}, st: ST ∪ {⊥}]]

Figure 3.7, illustrates three different examples of settlement points. The first exam-
ple is at the shore with coordinate tiles t1, t2, and t5, belongs to player one(red) and is
a village. The second example is at the bottom, close to the centre, belongs to player
two(green) and is a city. The third example, at the bottom left, is an empty settlement
point, in which both the owner and settlement type fields are ⊥.

Figure 3.7: Settlement Points Example

Road points are similar to settlement points, but have coordinates using only two
hexagonal tiles. Tiles used as coordinates must be adjacent and at least one of the
two is not a water tile. These coordinate pairs are unique and defined in the set CD
(Appendix A). Similar to settlement points, we map every coordinate pair in CD to
records indicating ownership. Unlike the settlement points, there is only a single type
of road, so we do not need a type distinction. If there is no road, the owner is ⊥.

21 3.2. TLA+ Model

Definition 19.8 (Road Points):
R ≜ [CD -> [own: Players ∪ {⊥}]]

In Figure 3.8 we see three examples of road points: the red player owns a road with
coordinates t2 and t5, the green player owns the road on {t6, t9}, and the road point
with coordinates t8 and t9 is not yet built.

Figure 3.8: Road points example

The bandit is a special piece that sits on a single map tile and prevents building and
resource production. It has no state other than which tile it is currently on, so the set of
all possible states for the bandit is the set of map tiles (M), excluding water tiles.

22 3.2. TLA+ Model

3.2.5 Invariants

We introduce the invariants that need to hold throughout the board game to ensure
correctness.

We begin with the invariant that constrains the defined variables SU and G. Its name
is TypeOK and it is equal to the conjunction of the two formulas defining the type of the
setup state (Definition 18) and the game state (Definition 19). It forces TLC to check
that the state of SU and G are valid as defined after each taken action.

The next invariant verifies that the amount of cards in the resource card pool is equal
to the sum of cards in player hands and in the bank. The function SumResourceAllPlayers(res)
sums up the resource cards of all player hands, that are of the type specified by res.
The function getIndex(el, tup) returns the position of the element el in the tuple
tup.

Invariant 1 (ConservationOfResourceCards):
ConservationOfResourceCards ≜
∀rct ∈ DOMAIN G.bnk.RC:

SumResourceAllPlayers(rct) + G.bnk.RC[rct] = RCP[getIndex(rct, RCTST)]

TLA+ provides a convenient syntax to make conjunctions with multiple terms and
large expressions easier to read:

Notation 13 (TLA Conjunctions):
TLA+ allows conjunctions to be used like bullet points. For example, if we have

predicates A and B, these two notations are equal:
A ∧ B ≜ ∧ A

∧ B

We use the conjunction syntax to represent the invariant that there is conservation
of development cards. We gather all the development cards of all players, the discard
pile, and the bank and check if they are equal to the development card pool. The
function SumDevelopmentAllPlayers(dct) sums up the development cards of all the
player hands with type dct.

Invariant 2 (ConservationOfDevelopmentCards):
ConservationOfDevelopmentCards ≜
∧ ∀ dct ∈ DOMAIN G.dp: SumDevelopmentAllPlayers(dct) +

G.dp[dct] +
G.bnk.DC[dct] =
DCP[getIndex(PCTMAP[dct], PCTST)]

∧ SumDevelopmentAllPlayers(”Knight”) + G.bnk.DC.Knight = DCP[4]
∧ SumDevelopmentAllPlayers(”VictoryPoint”) + G.bnk.DC.VictoryPoint = DCP[5]

Our last invariant is that each player should have all board game pieces either in
hand or on the board. We write this by asserting that the sum of unused and placed
buildings of that player must always be equivalent to the player’s total building pool (PB,
Definition14). We define a function NrPlayerRoadsOnMap(p) that returns the number
of roads on the map, that are owned by player p. Analogously to the road function, we
define NrPlayerSettlementOnMap(p, st) to return all settlements on the map with
the type st and owner p.

Invariant 3 (ConservationOfBuildings):
ConservationOfBuildings ≜
∀ p ∈ Players:
∧ G.b[p].Road + NrPlayerRoadsOnMap(p) = BP[1]
∧ G.b[p].Village + NrPlayerSettlementOnMap(p, Village) = BP[2]
∧ G.b[p].City + NrPlayerSettlementOnMap(p, City) = BP[3]

23 3.2. TLA+ Model

3.2.6 Initial State

In this section, we define the initial state of our state machine. We define the setup and
game state to reflect the empty default map in Figure 2.1. We begin with the player at
index one in P, in setup phase one. The bank holds all the cards, the discard pile is
empty, each player starts with an empty hand and all buildings. Moreover, all settlement
and road points are empty, the bandit is placed on the centre desert tile, and the turn
phase is ⊥:

Definition 20 (Init):
Init ≜
∧ SU = [sup |-> PhaseOne, ap |-> P[1]]
∧ G = [

ap |-> P[1],
bnk |-> [
RC |-> [Lumber |-> 19, Brick |-> 19, Wool |-> 19, Grain |-> 19, Ore |-> 19],
DC |-> [Monopoly |-> 2, YearOfPlenty |-> 2, RoadBuilding |-> 2,
Knight |-> 14, VictoryPoint |-> 5]

],
dp [Monopoly |-> 0, YearOfPlenty |-> 0, RoadBuilding |-> 0],
h |-> [p ∈ Players |-> [
RC |-> [Lumber |-> 0, Brick |-> 0, Wool |-> 0, Grain |-> 0, Ore |-> 0],
DC |-> [
BC |-> [Monopoly |-> 0, YearOfPlenty |-> 0, RoadBuilding |-> 0, Knight |-> 0],
AC |-> [Monopoly |-> 0, YearOfPlenty |-> 0, RoadBuilding |-> 0, Knight |-> 0],
UC |-> [Knight |-> 0, VictoryPoint |-> 0]

]
]],
b |-> [p ∈ Players |-> [Road |-> 15, Village |-> 5, City |-> 4]],
s |-> [c ∈ CT |-> [own |-> ⊥, st |-> ⊥]],
r |-> [c ∈ CD |-> [own |-> ⊥]],
ba |-> [coords |-> [arr |-> 1, row |-> 1,col |-> 3], res |-> ⊥, n |-> ⊥],
tp |-> ⊥

]

3.2.7 Actions

In this section, we introduce the actions of our model. An action is a transition from
one state to another state. This transition can only be taken if the action as a whole
evaluates to true. An action consists of two parts: 1) The enabling conditions, which
must be true for the action to be taken, and 2) the primed variables, that mark which
variables are changed by this action and how. We begin by introducing the setup steps
prior to the game properly starting. We then follow with trading and building. The full
TLA+ definitions can be found in the appendix section A from line 341 to line 815.

Setup Steps

In phase one of the game’s setup, each player must choose a settlement point that is
viable according to the rules and place a road on one of the three adjacent road points.
The enabling conditions are: 1) the turn phase is bottom, 2) the state is in PhaseOne
and 3) the active player is a member of Players.

The exists (∃) show choices, that can be made by a player, since the predicate fol-
lowing can be true for multiple values. The first choice is the settlement point where
we want to place our village. The predicate buildable(sp) guarantees that the set-
tlement point is viable according to the rules (Section 2.1.1). Next, the player chooses

24 3.2. TLA+ Model

a road point, to place a road. The predicate isAdjacentRoadToSettlement(sp, rp)
ensures the settlement and the road are adjacent to each other and the predicate
roadHasNoBandit(rp) ensures the bandit is not on a tile bordering the road point.

If these conjunctions can be fulfilled, we change the state appropriately by changing
the owner of the settlement and road point, removing a road and a village from the
player buildings, and change the active player. In case this action is taken by the
last player, we go to SetupPhaseTwo. For this phase, we need the reverse order of
the players, which can be computed using the function reverse(tup), that reverse a
tuple. This sets the next active player to be the one in the first position of the reversed
player tuple P. Otherwise, if we stay in SetupPhaseOne, the next player in P becomes
the active player.

Action 1 (SetupPhaseOne):
SetupPhaseOne ≜
∧ G.tp = bot
∧ SU.sup = PhaseOne
∧ SU.ap ∈ Players
∧ ∃sp ∈ DOMAIN G.s:

∧ G.s[sp].own = ⊥
∧ buildable(sp)
∧ ∃rp ∈ DOMAIN G.r:

∧ G.r[rp].own = ⊥
∧ isAdjacentRoadToSettlement(sp, rp)
∧ roadHasNoBandit(rp)
∧ G’ = [G except !.b[SU.ap].Road = @ - 1,

!.b[SU.ap].Village = @ - 1,
!.s[sp] = [own |-> SU.ap, st |-> Village],
!.r[rp] = [own |-> SU.ap]]

∧ IF getIndex(SU.ap, P) = Cardinality(Players)
THEN SU’ = [SU EXCEPT !.ap = reverse(P)[1],

!.sup = PhaseTwo]
ELSE SU’ = [SU EXCEPT !.ap = P[(getIndex(SU.ap, P) + 1)]]

TLA+ provides a convenient syntax to define sets of elements satifying a predicate:

Notation 14 (Set of Elements satisfying a Predicate):
In TLA+ we can specify a set with a predicate as a filter. Only elements that fulfil
the predicate will be part of the set. For example, if we have the set N ≜ {2,4,8}
and we want only numbers above 5, we write: {n ∈ N: n > 5} ≜ {8}.

We use this notation in the next phase to filter resource types.
In the second setup phase, in reverse order, we repeat what we did in Setup-

PhaseOne. However, each player receives resources from the three coordinate tiles
of the placed village. We take a closer look at the local variable gain. The innermost
set returns all coordinates of the chosen settlement point (sp) that have a resource
type. Each coordinate is mapped to a one (villages produce one resource) and then
SumResFunc creates a record with the amount of resources gained. This record has
the same fields as the RC field in the player hand. We use AddRec(rec1, rec2) and
SubRec(rec1, rec2) to add or subtract records with the same length and domain. In
this case the player hand is empty and we overwrite it with the gain record. The bank
subtracts gain from its current record using SubRec. If the last player of the reverse
order takes this action, we move the turn phase to DiceRoll.

Action 2 (SetupPhaseTwo):
SetupPhaseTwo ≜

25 3.2. TLA+ Model

∧ G.tp = bot
∧ SU.sup = PhaseTwo
∧ ∃ sp ∈ DOMAIN G.s:

∧ G.s[sp].own = ⊥
∧ buildable(sp)
∧ ∃rp ∈ DOMAIN G.r:

∧ G.r[rp].own = ⊥
∧ isAdjacentRoadToSettlement(sp, rp)
∧ roadHasNoBandit(rp)
∧ SU’ = [SU EXCEPT !.ap = IF getIndex(SU.ap, reverse(P)) = Cardinality(Players)

THEN @,
ELSE reverse(P)[(getIndex(SU.ap, reverse(P))]]

∧ LET gain ≜ SumResFunc([c ∈ {s ∈ sp: s.res , bot} |-> 1])
IN G’ = [G EXCEPT !.h[SU.ap].RC = gain,

!.bnk.RC = SubRec(@, gain),
!.b[SU.ap].Road = @ - 1,
!.b[SU.ap].Village = @ - 1,
!.s[sp] = [own |-> SU.ap, st |-> Village],
!.r[rp] = [own |-> SU.ap]
!.tp = IF getIndex(SU.ap, reverse(P)) = Cardinality(Players)

THEN DiceRoll
ELSE ⊥]

With this the setup phases have been completed. Each player has two villages with
an adjacent road and earned resources from the second village. From this point on,
the setup state SU will no longer change. The game enters the standard turn cycle and
the first player begins with the dice roll phase.

Dice Roll

The turn of each player begins with a dice roll. If a seven is rolled, the active player must
move the bandit and can steal a resource from another player. If any other number is
rolled, each player may receive resources. The most interesting part in this phase is the
computation of the cards lost, in case of a seven and the cards gained otherwise. We
use ResourceGainPlayer(p,d) to compute the resource gain of all players. For each
player p, we gather the map tiles, which are 1) part of the coordinates of a settlement
owned by p and 2) have a number that matches the rolled die d. We split these map
tiles into two sets, one with settlement points that have villages and one with cities. In
the end we sum up the resources of all the gathered settlement points. We gain two
resources for a tile with a city and one for a tile with a village. SumResFunc returns a
record with all the resource gains, that can be added to the current state of the player
and subtracted from the bank.

Function 1 (ResourceGainPlayer(p,d)):
ResourceGainPlayer(p,d) ≜

LET
V ≜ s ∈ UNION {sp ∈ DOMAIN G.s: G.s[sp].own = p ∧ G.s[sp].st = Village}:

s.n = d
C ≜ s ∈ UNION {sp ∈ DOMAIN G.s: G.s[sp].own = p ∧ G.s[sp].st = City}:
s.n = d

IN
SumResFunc([c ∈ (V ∪ C) |-> IF c ∈ C THEN 2 ELSE 1])

The action DiceRoll is the most complicated one in the game, thus we split it in two
parts: The first part is the case where a seven is rolled (DiceRollA), and the second

26 3.2. TLA+ Model

case is for all other dice results (DiceRollB).

Action 3 (DiceRollP):
DiceRollPhase ≜
∧ G.tp = DiceRoll
∧ SU.sup = PhaseTwo
∧ ∃ d ∈ 1..12:

IF d = 7
THEN DiceRollA
ELSE DiceRollB

Players only lose cards if the sum of their resource cards is higher than seven. We
use the function SumResourcesSinglePlayer(p) to sum up the resources of player p.
If a player does not lose resources, we define the loss as the record with zero resources
of each type. Should a player have more than seven cards, the player needs to transfer
half (rounded down) of the cards to the bank. We achieve this by taking the Cartesian
product of the Players and ResourceRecsWithSpecificSum, which constructs the set
of records, that have a sum of resources between four and seven. We then filter these
records to adhere to the properties we need for each player. First, the sum of all fields
in the record (computed using SumFunc(func) and IterateRec(rec)) must be equal
to half the sum of the player’s current resource cards. Second, the records must have
an amount of resources from zero to the player’s amount of resource cards. From the
remaining records one is chosen using the leading exists operator.

When rolling a seven, the active player must move the bandit. BanditMoves con-
tains all valid tiles to move the bandit to. The only conditions that the bandit has, is that
the tile the player moves it to: 1) is a part of the map, 2) is not the current tile that the
bandit is on, 3) is not water. In our specification, the player always tries to steal from
another player, hence we choose a tile that has a settlement of an adversary adjacent
to it. Then we check if the adversary has a resource card we can steal.

Now we need to adjust all player hands according to their losses. We construct new
player hands and replace G.h completely. We map a new player hand to each player
and need to cover several cases for RC: First we check that if we deduct the losses
from the adversary’s account, there is still a resource of type res that we can steal. If
no, we only deduct the loss. If yes, the active player subtracts the loss and adds the
stolen resource to the resource record. To add a single element to a record, we use the
AddRecEl(rec, f, n) function. It adds n to the field f in record rec. The adversary
loses the resources in the loss record and additionally the stolen good. If the player is
neither the active player nor the adversary, that is stolen from, then we subtract the loss
record. If no, all players just lose the loss record. The bank in turn receives the sum of
all the losses, the function SumResRecs(recs) accomplishes this.

The development cards change state as well. All the cards that are in BC are moved
into AC, because bought cards can be played in the next turn of a player. The unveiled
cards stay the same.

At last we set the new tile for the bandit and go to the trading phase.

Action 4 (DiceRollA):
DiceRollA ≜
∃ loss ∈ [Players -> ResourceRecsWithSpecificSum]:

27 3.2. TLA+ Model

∧ ∀ p ∈ Players:
IF SumResourcesSinglePlayer(p) ≤ 7
THEN [Lumber |-> 0, Brick |-> 0, Wool |-> 0, Grain |-> 0, Ore |-> 0]
ELSE
∧ SumFunc(IterateRec(loss[p])) = SumResourcesSinglePlayer(p) ÷ 2
∧ ∀ f ∈ DOMAIN G.h[p].RC:

loss[p][f] ∈ 0..G.h[p].RC[f]
∧ ∃ t ∈ BanditMoves:

∃q ∈ Players:
∧ q , G.ap
∧ hasSettlementOnTile(t,q)
∧ ∃ res ∈ DOMAIN G.bnk.RC:

∧ G.h[q].RC[res] ≥ 0
∧ G’ = [G EXCEPT !.bnk.RC = AddRec(@, SumResRecs(loss)),

!.h = [p ∈ Players |->
[RC |->

IF G.h[q].RC[res] - loss[q][res] > 0
THEN IF p = G.ap

THEN AddRecEl(
SubRec(G.h[p].RC, loss[p]),
res, 1)

ELSE IF p = q
THEN AddRecEl(

SubRec(G.h[p].RC, loss[p]),
res, -1)

ELSE SubRec(G.h[p].RC, loss[p])
ELSE SubRec(G.h[p].RC, loss[p]),

DC |->
[BC |-> [Monopoly |-> 0, YearOfPlenty |-> 0,

RoadBuilding |-> 0, Knight |-> 0],
AC |-> AddRec(G.h[p].DC.AC, G.h[p].DC.BC),
UC |-> G.h[p].DC.UC]

]],
!.ba = t,
!.tp = Trading]

∧ UNCHANGED(I)

If we do not roll a seven, things are simpler. We compute all the gains for each
player, add the gains to the player hands and remove the sum of all gains from the
bank, move all bought cards to the available cards, and move the turn phase to Trading.
In the special case where the bank does not have enough resources to cover the gains
of all players, no player gains anything.

Action 5 (DiceRollB):
DiceRollB ≜

LET
gain ≜ [p ∈ Players |-> ResourceGainPlayer(p,d)]

IN

28 3.2. TLA+ Model

∧ IF
THEN
∧ G’ = [G EXCEPT !.bnk.RC = SubRec(@, SumResRecs(gain)),

!.h = [p ∈ Players |->
[RC |-> AddRec(G.h[p].RC, gain[p]),
DC |-> [BC |-> [Monopoly |-> 0,
YearOfPlenty |-> 0, RoadBuilding |-> 0,
Knight |-> 0
],
AC |-> AddRec(G.h[p].DC.AC, G.h[p].DC.BC),
UC |-> G.h[p].DC.UC],

]],
!.tp = Trading]

∧ UNCHANGED(I)
ELSE UNCHANGED<<I, G>>

Trade

We have simplified trading, so that it only occurs between a single player and the bank
during their turn (i.e. trading between players is not supported). The rate at which a
player can trade, depends on the ports the player has access to. The most complex
conditions for a trade are for the two-to-one rates. A player needs a resource with an
amount of at least two and there must exist a wharf that has the same resource type
and its coordinates are a subset of the coordinates of a player owned settlement. If
these conditions are met, a player can exchange two resource cards for another and
the state of the bank and the player’s hand are modified accordingly.

Action 6 (TradeTwoToOne):
∧ G.tp = Trading
∧ ∃ give ∈ {rct ∈ DOMAIN G.bnk.RC: G.h[G.ap].RC[rct] ≥ 2 ∧

∃ w ∈ PlayerPorts(G.ap): w.wt ∈ RCT ∧ w.wt = RCTMAP[rct]}:
∃ receive ∈ {res ∈ DOMAIN G.bnk.RC: G.bnk.RC[res] > 0}:
∧ G’ = [G except !.bnk.RC = AddRecEl(AddRecEl(@, give, 2), receive, -1),

!.h[G.ap].RC = AddRecEl(AddRecEl(@, give, -2), receive, 1)
]

∧ UNCHANGED(I)

If a player cannot or does not want to trade, the action taken is the EmptyTrade,
which only changes the turn phase and leaves the rest of the state unchanged.

Action 7 (EmptyTrade):
∧ G.tp = Trading
∧ G’ = [G EXCEPT !.tp = Building]
∧ UNCHANGED(I)

Building

In the building phase, a player may build, or buy development cards. We show only one
example, since the placement of villages and its conditions were already shown in the
setup phases and the cities simply replace existing villages. Our example is the action
RoadBuilding. First, we check if the player has the necessary resources to build a road.
All costs are defined as records with the respective amount of resources needed (e.g.
RoadCost ≜ [Lumber |-> 1, Brick |-> 1, Wool |-> 0, Grain |-> 0, Ore |->
0]). Another thing we need to validate is, if there is still a road piece in the player’s
building pool left.

29 3.2. TLA+ Model

Predicate 1 (CanBuildRoad):
∧ ∀ res ∈ DOMAIN RoadCost: G.h[G.ap].RC[res] ≥ RoadCost[res]
∧ G.b[G.ap].Road > 0

If that is the case then we choose a road point, that is either adjacent to a settlement
the player owns or to another player-owned road point. The chosen road point is ad-
justed to be owned by the player and the cost of the road is transferred from the player
to the bank. A road piece is deducted from the player’s buildings. The turn phase is not
advanced yet, because the player may still build other buildings or buy a development
card.

Action 8 (BuildRoad):
BuildRoad ≜
∧ G.tp = Building
∧ CanBuildRoad
∧ ∃rp ∈ DOMAIN G.r:

∧ G.r[rp].own = bot
∧ roadHasNoBandit(rp)
∧ ∃rpt ∈ DOMAIN G.r:

∧ ∨ ∧ isAdjacentRoad(rp, rpt)
∧ G.r[rpt].own = G.ap

∨ ∧ ∃sp ∈ DOMAIN G.s:
∧ G.s[sp].own = G.ap
∧ isAdjacentRoadToSettlement(sp, rp)

∧ G’ = [G except !.bnk.RC = AddRec(@, RoadCost),
!.h[G.ap].RC = SubRec(@, RoadCost),
!.b[G.ap].Road = @ - 1,
!.r[rp] = [own |-> G.ap]]

∧ UNCHANGED(I)

Like in the trading phase, if a player cannot or does not want to build, there is an
empty build action, that changes only the turn phase. If we end the building phase,
however, we additionally check the victory condition. If a player has ten or more victory
points that are gained by villages (one point), cities (two points), the longest road (two
points), the mightiest army (two points), and victory point cards (one point), then the
game ends and the turn phase is changed to ⊤. Once the game reaches the ⊤ state,
no further action can be taken and the state machine terminates.

Action 9 (EmptyBuild):
∧ G.tp = Building
∧ G’ = [G EXCEPT !.tp = IF PlayerPoints(G.ap) ≥ 10 THEN ⊤ ELSE DiceRoll]
∧ UNCHANGED(I)

Chapter 4

Implementation

In this chapter we discuss how we implemented the model mentioned in Chapter 3 in
python. We mention all the essential libraries we used and how we integrated Git to
handle the synchronization of the game state. To stay faithful to the model and avoid
introducing errors due to inconsistencies, the implementation follows the structure of
the specification. The full implementation can be found on GitHub [12].

4.1 Libraries

The most important libraries we used are: 1) GitPython, which allows us to use Git
commands at a high level in python, while still enabling us to use low-level commands.
2) Pygame, that allows us to draw a visualization of the game state and provides a
simple way to create user interfaces and helps handling player events, like hovering the
mouse over objects, clicking objects, and pressing keys.

4.2 Game State

4.2.1 Representation

Each player has an append-only log which is implemented as a Git branch. Since Git is
usually used as version control, which operates with folders and files, we represent the
state of our game accordingly. We do that in a manner, such that the folder structure
mirrors the model definition of the entire game state, seen in the initial state of the
model 20. This led us to the structure in Figure 4.1, where each file contains the part
of the state which corresponds to the file’s name.

4.2.2 Git Branches and Commits Structure

We introduce how we handle all branches and who has access to them. We create a
branch for each player in a match, named after the player’s colour and the simulation
number (e.g. ”Red 0”). We assume that only player ”Red” commits to the Red-branch
and the other players only commit to their branch. Each player can, however, synchro-
nize their branch state with the other player’s branches to obtain newer commits they
are not yet replicating.

We have a special case after a seven is rolled because player concurrently choose
which cards to loose. To do so, each player creates a temporary branch with a unique
and deterministic reference name. The temporary branches are named after the id of

30

31 4.2. Game State

Figure 4.1: Folder structure representing complete game state

the initial dice roll commit and then we add ”loss” and the standard naming convention
to it (e.g. ”{commit id} loss Red 0”).

The Git commit fields we use in our implementation are as follows: The commit
message contains the name of the action(e.g. ”trading 4 to 1”) and the player number.
The parent is usually the head reference of the branch. In case we have a rolled seven,
the merge commit has multiple parents to include all concurrent commits. The author
and committer are the player’s colour designation paired with the simulation number
(e.g. ”Red 5”).

4.2.3 Modifying and Synchronizing

The most important part of the implementation, is how we keep the game state up-to-
date and synchronized with all peers.

To change the state following a player’s action, we modify the respective files, add
them to a Git commit, name the commit after the action that was taken, and commit it
to the player’s git branch. The history of commits not only serves for synchronizing with
other peers, we also use it to obtain a summary of the sequence of players’ actions for
debugging.

To retrieve other players’ actions and the latest state of the game, we track them as
remote branches and update periodically. For most actions, since only the active player
may modify the state and all players perform their own actions sequentially, there are no
concurrent updates. We therefore simply use the built-in Git merge command: updates

32 4.2. Game State

result in ”fast-forward” merges and cannot create conflicts.
The only exception is when a seven is rolled and all players with more than seven

cards have to choose which cards they want to discard(see Section 3.2.7). In that case,
we use the special naming convention mentioned in Section 4.2.2. The active player
actively looks for these branches, awaits all choices and then merges the results using
a custom merge, modifies all files and commits the result. The result is then propagated
normally to all other players. Each player can delete the temporary branch after having
replicated the merged result.

In the usual non concurrent case, an example of an action changing the state could
look like this: We assume that we play a two-player match and the initialization phases
are over. Player one rolls the dice and each player receives resources from the bank,
after that the turn phase changes. This means we modify the bank, both player hands,
and the turn phase. All changed files can be seen in Figure 4.2. We add these files to
the ”dice roll”-commit and append it to Player one’s branch. Player 2 can then merge
with Player one’s branch and is up to date. The update could happen instantly after the
phase of player one is finished or player two could stay in an unsynchronized state until
player two eventually decides to synchronize with player one again.

Figure 4.2: Modified Files

4.2.4 Interface Files/Code

To make the state in the files usable in our code, we created an input/output interface,
which handles the conversion from python class objects into strings and vice versa.
So to use the road points for example, we read the ”road points”-file line by line and
convert each line into a RoadPoint class object, which we use to represent all roads
in the game. If we build a road, the respective RoadPoint object is modified and the
corresponding line the ”road points”-file is overwritten with the string representation of
the object.

Chapter 5

Evaluation

In this chapter we evaluate the resource consumption of our implementation (Chap-
ter 4). We also argue why the model we used is correct. We will first introduce the
metrics we have taken in Section 5.1 and then discuss the correctness of our model in
Section 5.2.

5.1 Metrics

The metrics we evaluate are: 1) the storage space required per game, 2) the average
growth per action and 3) the overhead in latency introduced by using a distributed
system instead of a single central server. We present our Methodology in Section 5.1.1
first. Then we talk about the results in Section 5.1.4.

5.1.1 Methodology

All measurements were taken on a single computer. Its specifications can be found
in Figure 5.1. We expect all measurements, except the computation, to yield similar
results even with a different computer.

OS Windows 11

CPU i9-12900K
3.19GHz
16 Cores

MEM 32GB
DDR4

GPU RTX 2070 Super
8GB

GDDR6

Figure 5.1: Machine specifications

33

34 5.1. Metrics

5.1.2 Simulation

As explained in Chapter 4, the state of a game of ”Catan” is represented by a Git
tree inside a commit. Every commit reflects a player’s action and contains the new
state resulting from that action. To mimic a distributed game on multiple machines, we
ensure that the history generated on one machine is equal to the history that would
have been generated by multiple peers.

To do this, we create a separate branch for each player. This branch is only manip-
ulated by the player it represents.

The whole simulation is set up to run a loop until the winning condition is reached
or an invariant is violated. In each simulation run, a player is chosen in a round-robin
manner and merges states with the other branches. After synchronizing, the simulator
follows the standard turn phase of ”Catan” (see Section 2.1): The chosen player takes
an action if possible, given the previous state of the game. This ensures that any player
can try to invoke an action, even if another player is the current active player, in order
to possibly catch bugs in enabling conditions. When the victory condition is reached, a
new simulation starts.

To distinguish different simulation runs, each run creates its own directory with a
unique repository name. The gathering of data is done by traversing the Git commit tree
after the execution, except for the elapsed time, which is taken during the simulations.

5.1.3 Measurements

We selected metrics in order to provide a reasonable baseline for developers that may
re-implement our design on other combination of platforms and languages, or design
new optimizations for our current implementation. We measured: 1) the storage space
of a full game of ”Catan”, 2) the average size of a state change, and 3) the latency of
actions as well as the time spent on managing the state. We now explain the method-
ology of how we measure these three metrics in more detail.

Storage

After the simulations have all been finished, we use the unix "du -sh" command on
the ”.git” directory . This returns a human readable estimate of the disk usage of all
files in the specified directory. With this we get a measure of how much disk space the
git repository needs. The amount of disk space includes all actions for all players and
all intermediary states of the game, as would be the case in a peer-to-peer scenario
since all peers replicate the full history.

Git delta sizes

As explained in Section 5.1.2, when the active player changes, the first action is to
synchronize the state with all other peers. This means that our deltas are only between
parent-child commits. Because of this, we compute the differences between all refer-
ences that are parent and child using the "git diff ref∼x ref∼(x-1) | wc -c".
It computes the difference between the two references and then counts the bytes for
the changed files.

Latency of Actions

We calculate the computation time by measuring the time spent on performing an ac-
tion, i.e. computing the new state and committing it, and synchronizing between the Git
branches. To simulate the latency between two peers, we measure the time it takes to

35 5.1. Metrics

pull from a GitHub repository in two cases: 1) The state is the same and we just confirm
that the current state is up-to-date. 2) The state differs and needs to be updated.

We do not measure throughput, since we only deal with small peer-to-peer groups
of up to four members and for all practical purposes it is negligible compared to the
amount available on commonly used WiFi networks and home internet connections.

5.1.4 Results

In this section, we present the data we measured and present our interpretation.

Storage

We simulated 100 two-player matches and 100 four-player matches of ”Catan” and
measured the disk space needed and the number of commits until the game termi-
nated. The number of commits corresponds one-to-one with the number of actions all
players have taken.

We begin with two-player simulations, shown in Figure 5.2a. We can observe that
most games need at least 500 to 1250 actions to reach a state with a winner. They
need around 1.75 to 2.5MB in total for storage. The red circle shows the average of
2.12MB with a standard deviation of 0.41MB. The average number of commits is 880
with a standard deviation of 360 commits. If we normalize the repository size with
the number of commits, the normalized average is 2.77KB per commit with a standard
deviation of 0.99KB.

We also report on four-players simulations, as shown in Figure 5.2b. We see that
the disk space is 2.3MB on average with a standard deviation of 0.62MB and an av-
erage number of commits of 1168 with a standard deviation of 369 commits. The
normalized values have an average of 2.18KB per commit with a standard deviation of
0.81KB, showing less variation than the two-player data.

(a) 2 Players (b) 4 Players

Figure 5.2: Needed Storage Space of ”Catan” simulations

Discussion

It is clear that a minimum of states is needed for a player to amass resources and build
up points in order to reach ten victory points. This can be further delayed if the dice
rolls are unfavourable for the players and they do not receive resources. Furthermore,
since our simulator selects actions randomly, it can happen that simulated players take
actions that are not optimal for the state they are in. Games with human players are
likely to be shorter and therefore require less total space, so our results represent an
upper bound.

Comparing the two-player and four-player games, we can clearly see, that the two-
player matches need on average 50% less commits to crown a winner compared to a
four-player game. Having more players means the space on the map, the resources,

36 5.1. Metrics

and the victory points available are spread more due to the increased number of play-
ers, which leads to more actions being taken.

The two new players adding four records (two Player Building (Definition 19.5) and
two Player Hand (Definition 19.3 records)), explains the difference in average repository
size. These records give further state that can be modified and incur further size costs.

We see big variances in the repository sizes, these can be explained by the empty
actions a player must take if they have a resource shortage. These actions only change
the turn phase, and have minimal disk space cost. These droughts of resources happen
more often in two player-games, since the turn frequency is higher than in a four-player
game and players have less time to gather resources from their adversaries’ dice rolls.
This could explain the slightly lower variance in disk size for four-player matches.

Git delta sizes

We gathered the commit delta sizes of a two- and a four-player game into the his-
tograms in Figure 5.3. Both matches provided 750 commit deltas. We see that we
often have deltas with zero impact on the size, for this two-player match 24.4% are
empty updates. The four-player match has 22.9% empty updates. The average size of
an update is 0.49KB, with a standard deviation of 0.32KB in two-player matches and for
four-player games the average update has a size of 0.63KB with a deviation of 0.45KB.

(a) 2 Players (b) 4 Players

Figure 5.3: Histograms of Git commit deltas

Discussion

We have a similar amount of empty updates and overall the four-player match has
a higher update cost, which can be explained by the additional records of the two
player difference. The bigger state incurs higher update costs. We expected to see
significantly more empty actions in the two-player game than in the four-player game.

Latency Of actions

We simulated 100 two-player simulations and 100 four-player simulations. In Figure 5.4
we can see, that two-player matches need an average of 113s to finish, with a standard
deviation of 45.6s. Four-player matches finish on average in 406s, with a standard
deviation of 130.5s.

Figure 5.5 shows the elapsed time normalized with the number of commits and
broken up into synchronization and computation. We can see that the synchronization
process needs a significant amount of the total time spent. For two-player games, the
average time spent on synchronization is 64.4ms with a standard deviation of 4.9ms.
Computation on the other hand needs an average of 64.1ms with a standard deviation

37 5.1. Metrics

of 5.6ms. This means 50% of the elapsed time can be attributed to the synchroniza-
tion alone. For four-player matches synchronization takes 249.4ms on average with a
standard deviation of 25.6ms and the elapsed time for the computation is 99.7ms with
a standard deviation of 9.9ms. This results in a synchronization percentage of around
70%.

Figure 5.4: Elapsed time of two- and four-player simulations

(a) 2 Players (b) 4 Players

Figure 5.5: Local synchronization impact on elapsed time per commit

The latency of pulling from GitHub, rather than synchronizing locally, without differ-
ing state is 1s and 1.06s with differing state. The standard deviation for both is around
0.05s.

Discussion

It is easy to see in Figure 5.4, that four-player matches need more time to be simulated
than two-player games. The reason can be seen in Figure 5.5, the computation amount
did not significantly increase for more players, but the synchronization cost rose with a
factor of four. This could be explained by the simulations eagerness to always replicate
the state, when the player changes. This could potentially be improved.

We already discussed the difference in the amount of commits in the discussion
section of the storage evaluation above, hence we will continue with the steep latency
cost incurred when we would synchronize data with peers. One second dwarfs the
250ms needed to synchronize the state locally. In a scenario where a human actively
plays the game, a second is negligible.

38 5.2. Correctness

5.2 Correctness

In this section, we outline the methodology we used to show that our model is correct.
We also discuss our TLA+ specification and the python implementation.

5.2.1 Methodology

We use our TLA+ specification introduced in Model 3 to check safety properties. They
are checked after each action and the model checker stops should a property be vi-
olated. Instead of letting the model checker go through all possible states, we use
simulation-mode, which chooses random actions and reaches higher depths faster.
We do this because the exhaustive search got to a depth of 9 from an average game
depth of 1100. It ran for 3 hours with 550’000 states per minute and searched 115
million states and still had actions that could not be reached yet. For this reason we
decided to use sampling of runs instead of doing an exhaustive state space search.

The python implementation that we used to gather data, simulates the game as well.
We implemented it to reflect the TLA+ model and check the invariants of the game after
each action. When an invariant is violated, the error is written into a log and the state
of the game is reset to the last action and the simulation tries again. Additionally, we
have a visualization that can be used to check if the game board and all its pieces are
in the right place.

5.2.2 TLA+

While doing simulations with TLA+, we already reached terminal states without violating
safety properties, which means these properties hold. However we had to minimize
some of the state spaces for that to be possible. The loss computation in particular
took considerable time to compute valid values.

The safety properties consist of the invariants that checks if the available number of
game pieces and cards is consistent. For example that no village piece goes missing
or that no card is removed from a player without being added to another player or the
bank. Other properties are the type correctness of all variables in the state. We check
that each variable is in the set of possible states as defined by the model. This is
rechecked after every action, even if it does not modify the variable.

Since this was our first time working with TLA+, the invariants helped getting rid of
many small mistakes and the simulations helped spotting issues by mentioning which
states were not entered in the whole run. This method of running simulations and
repairing issues was repeated until all states were reachable and no safety property
was violated during a run. This guarantees that these properties hold.

We did not check the liveness properties using TLC, but we did with the python
simulations. Every match eventually terminated with a winner and the turn phase equal
to ⊤.

5.2.3 Simulations

The python implementation used the TLA+ model as a blueprint and should have no
bugs that were already found with the specification. After repairing all the bugs re-
vealed by the invariant checks and correcting the logic for roads, after seeing weird
road placement in the visualization, we ran the python implementation for at least 200
two-player matches to gather data for our evaluation, in which all reached the termi-
nation state without issue. After running four-player matches an issue with the bank
going into negative resources popped up, which we repaired as well and ran another
100 simulations for two- and four-player matches each. No issue was found in these

39 5.2. Correctness

200 runs. We sampled the finished games by running them with the visualization to
see the end state and confirm that all placements of the game pieces are legitimate.

Chapter 6

Related Work

In this chapter we dive into specifications made with TLA+, discuss different implemen-
tations of ”Catan”, and existing research around formalizing games and using formal
languages to design and test them.

6.1 TLA+

With the publication of the TLA+ Toolbox [6], which uses the TLC model checker [35]
to help users write models and the accompanying book for specifying systems [9], it
has become more approachable for many programmers to write formal specifications
for programs. The use of formal methods like TLA+ can help uncover unlikely bugs
and improve the design of a distributed system and is actively being used by giants like
Amazon Web Services [17]. Developers at Amazon mention that the TLA+ specifica-
tion not only helps with the design and discovery of bugs but it can double as a high
level documentation of a complex system as well. However, real systems have points
of failure outside the logic that can be captured by TLA+ and thus it does not cover
everything. After creating a model ourselves, we can only agree that a specification
helps with unearthing bugs. Thinking about states on a higher level invites redesigning
parts of the specification before a single line of code is written.

Most publicly available examples of TLA+ specifications are focused on logic puz-
zles, small algorithms, and protocols [30]. In regards to games, we have found a TLA+
model for tic-tac-toe [28] and some single-player puzzle games [27, 30] but nothing that
reaches the complexity of a board game like ”Catan”. To our knowledge, we provide
the first specification of TLA+ for a complex board game.

6.2 Catan implementations

There are many open source implementations for ”Catan”. Some implement all aspects
of the board game, including a server and host application [3, 16], or only a local
version, where all players take turns on the same machine [22]. The second type of
implementation uses the game to train AI adversaries using reinforcement learning [13,
33]. To our knowledge, there are no implementations of ”Catan” that utilise a peer-to-
peer approach. Neither are there any that use Git in particular to synchronize state.
Further search for games that use Git as a synchronization tool were without result,
which means that to the best of our knowledge, our work is the first to use Git to
synchronize game state.

40

41 6.3. Formalized Games

6.3 Formalized Games

There are other formal languages that have been used to describe games, for example
the Planning Domain Definition Language (PDDL), which is an attempt to standardize
AI planning languages. The viability of PDDL as a chess puzzle solver was explored in
a recent thesis [23] and found wanting for examples with bigger board size than 3x3.
SAS is another formal language used to formalize actions in a game. It was used to
train AI to find the optimal building order in Starcraft: Brood Wars [34]. There are many
examples that focus on AI training but there is less work focusing on the design and
correctness aspects of games using formal methods.

6.4 Git-based Applications using Append-Only Logs

The GOC-Ledger [11] and its modification, the δ-GOC-Ledger are both implemented
using Git and compared [4]. The GOC-Ledger relaxes the total ordering used by con-
ventional blockchains and uses state based conflict-free data types instead of consen-
sus algorithms to reconcile states between peers. Its delta version further improves by
reducing message sizes significantly. Another application is the 2-phase single-author
append-only log [10], which can eventually detect forks from malicious participants and
exclude them from the system. This allows for detection of malicious behaviour instead
of needing to prevent it.

Chapter 7

Conclusion

In this thesis we introduced a formal approach to implement the board game ”Catan”.
We captured all the characteristics of the game with a TLA+ model, that we used to
verify the correctness of the model itself and to create a Python implementation. The
model helped us see redundant definitions and improved the way we defined settlement
and road points. It helped us communicate about the game without having to define
platform specific details and it made us think about what the core invariants of our
application are. We used these invariants in our TLA+ model and the implementation.
This and the implemented visualization of the game state, helped unearthing many
bugs and accelerated the development of the application.

We presented a Python application that can simulate matches without player input
and uses Git to implement append-only logs. It provides the full history of a game in the
Git repository and was useful for debugging and gathering statistics. To our knowledge,
this thesis provided the first TLA+ model for a complex multi-player board game, as well
as the first peer-to-peer implementation of ”Catan” using Git. We additionally presented
performance metrics that may serve as a point of comparison for future implementa-
tions on different centralized or peer-to-peer systems. Results were: First, that a game
of ”Catan” with four players and a full git history needs on average less than 3MB of
storage space. Second, a fifth of all commits were empty, meaning they had a negli-
gible difference to their previous state. Third, in a four-player match, the time spent to
compute an action and push the new state is dominated by the synchronization. When
we synchronized a four-player match with a peer, we spent 100ms on the action and
ten times the amount on the synchronization.

With this thesis we wanted to give programmers insight into the usefulness of proto-
typing with a model first, to check for logic issues and implement programs based on a
model blueprint. In addition, we showed the usefulness of Git in a peer-to-peer setting
as a mechanism to handle synchronization in an efficient manner.

7.1 Insights of the Development Methodology

7.1.1 Working with TLA+

Many programmers, myself included, are wary of formal methods when programming.
However, working with TLA+ feels more like programming than cold, hard mathemat-
ics. The editor and compiler help mitigate errors and the testing environment feels
approachable. Creating a model before implementing an idea makes it necessary to
think about the whole application at a high-level, e.g. what are the necessary constants
and variables, what actions can be taken in what state, and which states are consid-
ered valid states. This process can lead to optimized data structures or changes in

42

43 7.2. Future Work

the base approach in general. This happens without incurring too much programming
debt, since we don’t need to rewrite a complete implementation, we simply adjust our
specification. It does, however, need a shift from thinking about classes, functions and
programming data structures, into a more set, predicate, and definition oriented uni-
verse. It may take some time to accomplish this shift, but after it is done, thinking in
that fashion becomes second nature. The TLA+ specification is a good tool to discuss
programs with other people, since the code of the model is more compact than the
implementation. In our example, the TLA+ model is 700 lines long, 100 of these lines
being the hard-coded parts of the map. Our python implementation on the other hand
is 2’200 lines without the visualization and 2’700 with UI. This is a difference of a factor
of three to four, which is quite significant. The fact that the model specification of the
program is shorter, more high-level, and without specific platform details, makes it valu-
able as documentation. A new person on a project may have an easier time reading
a specification than having to study thousands of lines of code, that are bloated with
platform specific details.

Thinking about an application on a high-level, and writing the specification as a
documentation supplement (aspects not related to distributed behaviour, e.g. security,
still need to be documented, and TLA+ does not cover them...), are just the initial
benefits. While writing the model, we can check it for errors using type definitions,
safety and liveness properties. This helps us find mistakes in the code and in the logic
of the model. After the model is complete, we can check if each action is reachable,
and if it always terminates. If that is the case, we can use the model to implement our
application on a chosen system.

In our case, we found half the bugs in our implementation, just by checking the
invariants of the model after each action. This included a city being built on another
city instead of replacing a village, development cards vanishing or the bank running
out of cards to provide resources to the players. Having a visualization of what is
happening is helpful as well, in our implementation there was a logic error, that allowed
wrong road placements, because the definition of an adjacent road was wrong. Errors
such as these, are hard to detect in the model itself, since the IDE cannot know what
the correct definition of an adjacent road is. So, like with any method to verify that
a program actually does, what we intend it to do, it is always helpful to have multiple
ways to verify the result. All in all TLA+ was quite helpful with defining what data is
immutable or mutable, what data can be computed from the state, finding bugs, and
what the invariants are, that need to hold throughout a game.

7.1.2 Git

Git provides interesting information to further ensure everything is in order. We used
Git to record the complete game state in a Git tree as well as the entire game history
using a directed acyclic graph of commits with each commit containing the name of the
action taken, the player number, and further information (e.g. the dice roll number).
This allowed us to gather statistics on all games and check if every action is indeed
taken. In our case we could see that the distribution of dice rolls was uniform, which
does not reflect two 6-sided dice.

The history is incredibly useful for reproducing bugs. In case we encounter an error,
we can just rebase to the last correct commit and rerun the program to re-encounter
the bug.

7.2 Future Work

Since we only implemented a simplified version of ”Catan”, an extension would be
to allow for trade between players during the trading phase. Even more freedom of

44 7.3. Perspectives

play could be allowed by merging the trading and building phases into a single phase,
according to the advanced player rules of ”Catan”. There are also many add-ons to the
basic ”Catan” game that could be added to the base game, which would include new
buildings, new maps and new mechanics to earn victory points.

Our implementation cannot be played with human players because it is lacking an
interface to perform actions and a mechanism to create and join a game. There could
be interesting projects in implementing those with augmented reality or projector-based
interfaces.

Our TLA+ model could be used to implement ”Catan” in another peer-to-peer sys-
tem and compare it to our baseline implementation. It could also be used as an inspi-
ration to create models for other board games or programs.

7.3 Perspectives

TLA+ has the potential to become a very powerful tool in the future. With a few qual-
ity of life improvements for the editor and model checker, it could be elevated to the
standard of current IDEs and make the mathematics feel more like programming. If
we reach the point where programmers think of TLA+ as just another programming
language, the barrier to entry would be significantly lower. Furthermore, if there exists
a toolbox that is convenient to use and provides clarity for concurrent programs to the
users, more people might be willing to try and create concurrent applications or sys-
tems, which would further incentivize improvements to TLA+ or even motivate others to
create something similar, creating competition in this field. Especially in today’s times,
where privacy and control over data are becoming more relevant, programmers are
incentivized to create applications that protect these values and TLA+ might provide a
good entry point for people interested.

Multi-core processors are ubiquitous in current computers and server clusters used
for computation are more common than ever. Being able to write error-free applications
that can leverage the computation power of multiple machines or cores is hard. Since
they need to be concurrent and reasoning about all states that can occur is challenging.
However, if we have tools that make it easier to do these challenging tasks without a
programmer needing to get a mathematics degree can only improve the landscape
of applications that get created in the future or might just help to improve an existing
system by refining and validating its correctness.

Bibliography

[1] Yves Bertot and Pierre Castéran. “Interactive Theorem Proving and Program
Development: Coq’Art: The Calculus of Inductive Constructions”. In: Textbook.
Springer, 2004. isbn: 978-3-540-20854-9.

[2] Eric Brewer. “Towards robust distributed systems”. In: July 2000, p. 7. doi: 10.
1145/343477.343502.

[3] Hemil Desai. Imperials. Accessed: May 2025. url: https : / / github . com /
hemildesai/imperial.

[4] Jannick Heisch. “Delta-GOC-Ledger: Incremental Checkpointing and Lower Mes-
sage Sizes for Grow-Only Counters Ledgers with Delta-CRDTs”. Archive url: (vpn
protected) https://central.dmi.unibas.ch/data/storage/theses/2024/heisch jannick/Delta-
GOC-Ledger - Incremental Checkpointing and Lower Message Sizes for Grow-
Only Counters Ledgers with Delta-CRDTs.pdf. MA thesis. Universität Basel, 2024.
url: https://web.archive.org/web/20250227032428/https://cn.dmi.
unibas.ch/fileadmin/user_upload/redesign-cn-dmi/pubs/theses/

master/Heisch-Delta-GOC-Ledger.pdf.

[5] Anne-Marie Kermarrec, Erick Lavoie, and Christian Tschudin. “Gossiping with
Append-Only Logs in Secure-Scuttlebutt”. In: Proceedings of the 1st Interna-
tional Workshop on Distributed Infrastructure for Common Good. DICG’20. Delft,
Netherlands: Association for Computing Machinery, 2021, pp. 19–24. isbn: 9781450381970.
doi: 10.1145/3428662.3428794. url: https://doi.org/10.1145/3428662.
3428794.

[6] Markus Alexander Kuppe, Leslie Lamport, and Daniel Ricketts. “The TLA+ Tool-
box”. In: Electronic Proceedings in Theoretical Computer Science 310 (Dec.
2019), pp. 50–62. issn: 2075-2180. doi: 10.4204/eptcs.310.6. url: http:
//dx.doi.org/10.4204/EPTCS.310.6.

[7] Leslie Lamport. A Science of Concurrent Programs. Final draft available at https:
//lamport.azurewebsites.net/tla/science-book.html. Cambridge Uni-
versity Press, 2024.

[8] Leslie Lamport. Computation and State Machines. https://www.microsoft.
com/en-us/research/publication/computation-state-machines/. Mi-
crosoft Research. 2008.

[9] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hard-
ware and Software Engineers. USA: Addison-Wesley Longman Publishing Co.,
Inc., 2002. isbn: 032114306X.

[10] Erick Lavoie. 2P-BFT-Log: 2-Phase Single-Author Append-Only Log for Adver-
sarial Environments. 2023. arXiv: 2307.08381 [cs.DC]. url: https://arxiv.
org/abs/2307.08381.

[11] Erick Lavoie. GOC-Ledger: State-based Conflict-Free Replicated Ledger from
Grow-Only Counters. 2023. arXiv: 2305.16976 [cs.DC]. url: https://arxiv.
org/abs/2305.16976.

45

https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/343477.343502
https://github.com/hemildesai/imperial
https://github.com/hemildesai/imperial
https://web.archive.org/web/20250227032428/https://cn.dmi.unibas.ch/fileadmin/user_upload/redesign-cn-dmi/pubs/theses/master/Heisch-Delta-GOC-Ledger.pdf
https://web.archive.org/web/20250227032428/https://cn.dmi.unibas.ch/fileadmin/user_upload/redesign-cn-dmi/pubs/theses/master/Heisch-Delta-GOC-Ledger.pdf
https://web.archive.org/web/20250227032428/https://cn.dmi.unibas.ch/fileadmin/user_upload/redesign-cn-dmi/pubs/theses/master/Heisch-Delta-GOC-Ledger.pdf
https://doi.org/10.1145/3428662.3428794
https://doi.org/10.1145/3428662.3428794
https://doi.org/10.1145/3428662.3428794
https://doi.org/10.4204/eptcs.310.6
http://dx.doi.org/10.4204/EPTCS.310.6
http://dx.doi.org/10.4204/EPTCS.310.6
https://lamport.azurewebsites.net/tla/science-book.html
https://lamport.azurewebsites.net/tla/science-book.html
https://www.microsoft.com/en-us/research/publication/computation-state-machines/
https://www.microsoft.com/en-us/research/publication/computation-state-machines/
https://arxiv.org/abs/2307.08381
https://arxiv.org/abs/2307.08381
https://arxiv.org/abs/2307.08381
https://arxiv.org/abs/2305.16976
https://arxiv.org/abs/2305.16976
https://arxiv.org/abs/2305.16976

46 Bibliography

[12] Tim Matter. P2P Catan Simulation. 2025. url: https://github.com/Matter95/
CatanDS.

[13] Peter McAughan et al. QSettlers: Deep Reinforcement Learning for Settlers of
Catan. Accessed: May 2025. url: https://akrishna77.github.io/QSettlers/.

[14] Stephan Merz. “On the Logic of TLA+”. In: Computers and Informatics 22 (2003),
pp. 351–379.

[15] Stephan Merz. “The Specification Language TLA+”. In: Logics of Specification
Languages. Ed. by Dines Bjørner and Martin C. Henson. Monographs in Theo-
retical Computer Science. Berlin-Heidelberg: Springer, 2008, pp. 401–451.

[16] Jeremy Monin. Full Java Catan Implementation. Accessed: May 2025. url: https:
//nand.net/jsettlers/.

[17] Chris Newcombe et al. “How Amazon web services uses formal methods”. In:
Commun. ACM 58.4 (Mar. 2015), pp. 66–73. issn: 0001-0782. doi: 10.1145/
2699417. url: https://doi.org/10.1145/2699417.

[18] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Vol. 2283. LNCS. Springer, 2002. isbn: 978-3-
540-43376-7. doi: 10.1007/3-540-45949-9. url: https://link.springer.
com/book/10.1007/3-540-45949-9.

[19] Ulf Norell. “Dependently Typed Programming in Agda”. In: Proceedings of the
6th International Conference on Advanced Functional Programming (AFP 2008).
Vol. 5832. LNCS. Springer, 2009, pp. 230–266. doi: 10.1007/978- 3- 642-
04652-0_5. url: https://doi.org/10.1007/978-3-642-04652-0_5.

[20] p2panda GitHub. Accessed: May 2025. url: https://github.com/p2panda.

[21] P2Panda Specification. Accessed: May 2025. url: https://aquadoggo.p2panda.
org/specifications/.

[22] Clifford Ressel. Local Catan Implementation. Accessed: May 2025. url: https:
//github.com/CSRessel/catan.

[23] Ken Rotaris. Single-Player Chess as a Planning Problem. Accessed: May 2025.
2022. url: https://ai.dmi.unibas.ch/papers/theses/rotaris-bachelor-
22.pdf.

[24] Nicholas I. Rummelt and Joseph N. Wilson. “Array set addressing: enabling tech-
nology for the efficient processing of hexagonally sampled imagery”. In: Journal
of Electronic Imaging 20.2 (2011), p. 023012. doi: 10.1117/1.3589306.

[25] SSB Specification. Accessed: May 2025. url: https://spec.scuttlebutt.
nz/introduction.html.

[26] Dominic Tarr et al. “Secure Scuttlebutt: An Identity-Centric Protocol for Subjective
and Decentralized Applications”. In: Proceedings of the 6th ACM Conference on
Information-Centric Networking. ICN ’19. Macao, China: Association for Comput-
ing Machinery, 2019, pp. 1–11. isbn: 9781450369701. doi: 10.1145/3357150.
3357396. url: https://doi.org/10.1145/3357150.3357396.

[27] The Peg Game TLA+ Specification. Accessed: May 2025. url: https://identity.
pub/2019/05/01/peg-game.html.

[28] Tic Tac Toe TLA+ Specification. Accessed: May 2025. url: https : / / www .
monkeynut.org/tic-tac-toe/?utm_source=chatgpt.com.

[29] TinySSB Specification. Accessed: May 2025. url: https : / / github . com /
tinySSB/tiny-ssb-spec.

[30] TLA+ Specification Examples. Accessed: May 2025. url: https://github.
com/tlaplus/Examples.

https://github.com/Matter95/CatanDS
https://github.com/Matter95/CatanDS
https://akrishna77.github.io/QSettlers/
https://nand.net/jsettlers/
https://nand.net/jsettlers/
https://doi.org/10.1145/2699417
https://doi.org/10.1145/2699417
https://doi.org/10.1145/2699417
https://doi.org/10.1007/3-540-45949-9
https://link.springer.com/book/10.1007/3-540-45949-9
https://link.springer.com/book/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0_5
https://github.com/p2panda
https://aquadoggo.p2panda.org/specifications/
https://aquadoggo.p2panda.org/specifications/
https://github.com/CSRessel/catan
https://github.com/CSRessel/catan
https://ai.dmi.unibas.ch/papers/theses/rotaris-bachelor-22.pdf
https://ai.dmi.unibas.ch/papers/theses/rotaris-bachelor-22.pdf
https://doi.org/10.1117/1.3589306
https://spec.scuttlebutt.nz/introduction.html
https://spec.scuttlebutt.nz/introduction.html
https://doi.org/10.1145/3357150.3357396
https://doi.org/10.1145/3357150.3357396
https://doi.org/10.1145/3357150.3357396
https://identity.pub/2019/05/01/peg-game.html
https://identity.pub/2019/05/01/peg-game.html
https://www.monkeynut.org/tic-tac-toe/?utm_source=chatgpt.com
https://www.monkeynut.org/tic-tac-toe/?utm_source=chatgpt.com
https://github.com/tinySSB/tiny-ssb-spec
https://github.com/tinySSB/tiny-ssb-spec
https://github.com/tlaplus/Examples
https://github.com/tlaplus/Examples

47 Bibliography

[31] TLA+ Video Series. Accessed: May 2025. url: https://lamport.azurewebsites.
net/video/videos.html.

[32] Christian Tschudin. TinySSB GitHub. Accessed: May 2025. url: https://github.
com/ssbc/tinySSB.

[33] Karan Vombatkere. Catan AI. Accessed: May 2025. url: https://github.com/
kvombatkere/Catan-AI.

[34] Severin Wyss. A Formalism for Build Order Search in StarCraft Brood War. Ac-
cessed: May 2025. 2016. url: https://ai.dmi.unibas.ch/papers/theses/
wyss-bachelor-16.pdf.

[35] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. “Model Checking TLA+ Spec-
ifications”. In: Proceedings of the 10th IFIP WG 10.5 Advanced Research Work-
ing Conference on Correct Hardware Design and Verification Methods. CHARME
’99. Berlin, Heidelberg: Springer-Verlag, 1999, pp. 54–66. isbn: 3540665595.

https://lamport.azurewebsites.net/video/videos.html
https://lamport.azurewebsites.net/video/videos.html
https://github.com/ssbc/tinySSB
https://github.com/ssbc/tinySSB
https://github.com/kvombatkere/Catan-AI
https://github.com/kvombatkere/Catan-AI
https://ai.dmi.unibas.ch/papers/theses/wyss-bachelor-16.pdf
https://ai.dmi.unibas.ch/papers/theses/wyss-bachelor-16.pdf

Appendix A

TLA+ Specification and TLC
settings

The next pages provide the complete TLA+ specification. To verify the specification
with TLC, use the following model properties:

1. Constants: PossiblePlayers ≜ {p1, p2, p3, p4} is a set of model values and all
other parameters defined with CONSTANTS are model values.

2. Invariants: TypeOK, ConservationOfResourceCards, ConservationOfDevelop-
mentCards, ConservationOfBuildings

3. Options: Simulation mode with a maximum length of 2500

48

1 module Catan
2 extends Integers, FiniteSets, Sequences, TLC

4 constant PossiblePlayers, The set of players

5 bot , bottom

6 Lumber , Brick , Wool , Grain, Ore, Resource Types

7 Monopoly , YearOfPlenty , RoadBuilding , Knight , VictoryPoint , Development Cards

8 ThreeToOne, Wharf Type

9 Road , Village, City , Building Type

10 DevCard , Purchasable Item

11 PhaseOne, PhaseTwo, Setup Phases

12 DiceRoll , Trading , Building , Turn Phases

13 top top

15 Choose an arbitrary order of players

16 chooseSeq(P)
∆
=

17 let recursive helper()
18 helper(S)

∆
=

19 if S = {} then ⟨⟩
20 else let p

∆
= choose s ∈ S : true

21 in
22 ⟨p⟩ ◦ helper(S \ {p})
23 in helper(P)

25 Players of the game

26 Players
∆
= choose

27 s ∈ subset PossiblePlayers :
28 Cardinality(s) ≥ 2
29 Player Order

30 P
∆
= chooseSeq(Players)

31 Resource Card Types

32 RCT
∆
= {Lumber , Brick , Wool , Grain, Ore}

33 RCTMAP
∆
= [Lumber 7→ Lumber , Brick 7→ Brick , Wool 7→ Wool ,

34 Grain 7→ Grain, Ore 7→ Ore]
35 RCTST

∆
= ⟨“Lumber”, “Brick”, “Wool”, “Grain”, “Ore”⟩

36 Progress Card Types

37 PCT
∆
= {Monopoly , YearOfPlenty , RoadBuilding}

38 PCTMAP
∆
= [Monopoly 7→ “Monopoly”, YearOfPlenty 7→ “YearOfPlenty”,

39 RoadBuilding 7→ “RoadBuilding”]
40 PCTST

∆
= ⟨“Monopoly”, “YearOfPlenty”, “RoadBuilding”⟩

41 Development Card Types

42 DCT
∆
= PCT ∪ {Knight , VictoryPoint}

43 Resource Card Pool

44 RCP
∆
= ⟨19, 19, 19, 19, 19⟩

45 Development Card Pool

46 DCP
∆
= ⟨2, 2, 2, 14, 5⟩

1

47 Bought Card Types

48 BCT
∆
= [Monopoly : 0 . . 2, YearOfPlenty : 0 . . 2, RoadBuilding : 0 . . 2, Knight : 0 . . 14]

49 Unveiled Card Types

50 UCT
∆
= [Knight : 0 . . 14, VictoryPoint : 0 . . 5]

51 Wharf Types

52 WT
∆
= {ThreeToOne} ∪ RCT

53 Map Tiles

54 MT
∆
= [

55 coords : [arr : 0 . . 1, row : Int , col : Int],
56 res : RCT ∪ {bot},
57 n : 2 . . 6 ∪ 8 . . 12 ∪ {bot}
58]

60 Wharfs

61 W
∆
= {

62 [coords 7→ {
63 [coords 7→ [arr 7→ 0, row 7→ 0, col 7→ 1],
64 res 7→ bot , n 7→ bot],
65 [coords 7→ [arr 7→ 1, row 7→ 0, col 7→ 2],
66 res 7→ Ore, n 7→ 10]
67 },
68 wt 7→ ThreeToOne
69],
70 [coords 7→ {
71 [coords 7→ [arr 7→ 0, row 7→ 0, col 7→ 3],
72 res 7→ bot , n 7→ bot],
73 [coords 7→ [arr 7→ 1, row 7→ 0, col 7→ 3],
74 res 7→ Wool , n 7→ 2]
75 },
76 wt 7→ Grain
77],
78 [coords 7→ {
79 [coords 7→ [arr 7→ 1, row 7→ 0, col 7→ 5],
80 res 7→ bot , n 7→ bot],
81 [coords 7→ [arr 7→ 0, row 7→ 1, col 7→ 4],
82 res 7→ Brick , n 7→ 10]
83 },
84 wt 7→ Ore
85],
86 [coords 7→ {
87 [coords 7→ [arr 7→ 0, row 7→ 1, col 7→ 0],
88 res 7→ bot , n 7→ bot],
89 [coords 7→ [arr 7→ 0, row 7→ 1, col 7→ 1],
90 res 7→ Grain, n 7→ 12]
91 },

2

92 wt 7→ Lumber
93],
94 [coords 7→ {
95 [coords 7→ [arr 7→ 1, row 7→ 1, col 7→ 5],
96 res 7→ Ore, n 7→ 8],
97 [coords 7→ [arr 7→ 1, row 7→ 1, col 7→ 6],
98 res 7→ bot , n 7→ bot]
99 },

100 wt 7→ ThreeToOne
101],
102 [coords 7→ {
103 [coords 7→ [arr 7→ 0, row 7→ 2, col 7→ 0],
104 res 7→ bot , n 7→ bot],
105 [coords 7→ [arr 7→ 0, row 7→ 2, col 7→ 1],
106 res 7→ Lumber , n 7→ 8]
107 },
108 wt 7→ Brick
109],
110 [coords 7→ {
111 [coords 7→ [arr 7→ 0, row 7→ 2, col 7→ 4],
112 res 7→ Wool , n 7→ 5],
113 [coords 7→ [arr 7→ 1, row 7→ 2, col 7→ 5],
114 res 7→ bot , n 7→ bot]
115 },
116 wt 7→ Wool
117],
118 [coords 7→ {
119 [coords 7→ [arr 7→ 1, row 7→ 2, col 7→ 2],
120 res 7→ Brick , n 7→ 5],
121 [coords 7→ [arr 7→ 0, row 7→ 3, col 7→ 1],
122 res 7→ bot , n 7→ bot]
123 },
124 wt 7→ ThreeToOne
125],
126 [coords 7→ {
127 [coords 7→ [arr 7→ 1, row 7→ 2, col 7→ 3],
128 res 7→ Grain, n 7→ 6],
129 [coords 7→ [arr 7→ 0, row 7→ 3, col 7→ 3],
130 res 7→ bot , n 7→ bot]
131 },
132 wt 7→ ThreeToOne
133]
134 }
135 ST

∆
= {Village, City} Settlement Types

136 BP
∆
= ⟨15, 5, 4⟩ Building Pool

3

137 SUP
∆
= {PhaseOne, PhaseTwo} Setup Phases

138 TP
∆
= {bot , DiceRoll , Trading , Building , top} Turn Phases

139 M
∆
= { Map

140 Top Row of Island

141 [coords 7→ [arr 7→ 0, row 7→ 0, col 7→ 1], res 7→ bot , n 7→ bot],
142 [coords 7→ [arr 7→ 0, row 7→ 0, col 7→ 2], res 7→ bot , n 7→ bot],
143 [coords 7→ [arr 7→ 0, row 7→ 0, col 7→ 3], res 7→ bot , n 7→ bot],
144 [coords 7→ [arr 7→ 0, row 7→ 0, col 7→ 4], res 7→ bot , n 7→ bot],

146 First Row of Island

147 [coords 7→ [arr 7→ 1, row 7→ 0, col 7→ 1], res 7→ bot , n 7→ bot],
148 [coords 7→ [arr 7→ 1, row 7→ 0, col 7→ 2], res 7→ Ore, n 7→ 10],
149 [coords 7→ [arr 7→ 1, row 7→ 0, col 7→ 3], res 7→ Wool , n 7→ 2],
150 [coords 7→ [arr 7→ 1, row 7→ 0, col 7→ 4], res 7→ Lumber , n 7→ 9],
151 [coords 7→ [arr 7→ 1, row 7→ 0, col 7→ 5], res 7→ bot , n 7→ bot],

153 Second Row of Island

154 [coords 7→ [arr 7→ 0, row 7→ 1, col 7→ 0], res 7→ bot , n 7→ bot],
155 [coords 7→ [arr 7→ 0, row 7→ 1, col 7→ 1], res 7→ Grain, n 7→ 12],
156 [coords 7→ [arr 7→ 0, row 7→ 1, col 7→ 2], res 7→ Brick , n 7→ 6],
157 [coords 7→ [arr 7→ 0, row 7→ 1, col 7→ 3], res 7→ Wool , n 7→ 4],
158 [coords 7→ [arr 7→ 0, row 7→ 1, col 7→ 4], res 7→ Brick , n 7→ 10],
159 [coords 7→ [arr 7→ 0, row 7→ 1, col 7→ 5], res 7→ bot , n 7→ bot],

161 Third Row of Island

162 [coords 7→ [arr 7→ 1, row 7→ 1, col 7→ 0], res 7→ bot , n 7→ bot],
163 [coords 7→ [arr 7→ 1, row 7→ 1, col 7→ 1], res 7→ Grain, n 7→ 9],
164 [coords 7→ [arr 7→ 1, row 7→ 1, col 7→ 2], res 7→ Lumber , n 7→ 11],
165 [coords 7→ [arr 7→ 1, row 7→ 1, col 7→ 3], res 7→ bot , n 7→ bot],
166 [coords 7→ [arr 7→ 1, row 7→ 1, col 7→ 4], res 7→ Lumber , n 7→ 3],
167 [coords 7→ [arr 7→ 1, row 7→ 1, col 7→ 5], res 7→ Ore, n 7→ 8],
168 [coords 7→ [arr 7→ 1, row 7→ 1, col 7→ 6], res 7→ bot , n 7→ bot],

170 Fourth Row of Island

171 [coords 7→ [arr 7→ 0, row 7→ 2, col 7→ 0], res 7→ bot , n 7→ bot],
172 [coords 7→ [arr 7→ 0, row 7→ 2, col 7→ 1], res 7→ Lumber , n 7→ 8],
173 [coords 7→ [arr 7→ 0, row 7→ 2, col 7→ 2], res 7→ Ore, n 7→ 3],
174 [coords 7→ [arr 7→ 0, row 7→ 2, col 7→ 3], res 7→ Grain, n 7→ 4],
175 [coords 7→ [arr 7→ 0, row 7→ 2, col 7→ 4], res 7→ Wool , n 7→ 5],
176 [coords 7→ [arr 7→ 0, row 7→ 2, col 7→ 5], res 7→ bot , n 7→ bot],

178 Fifth Row of Island

179 [coords 7→ [arr 7→ 1, row 7→ 2, col 7→ 1], res 7→ bot , n 7→ bot],
180 [coords 7→ [arr 7→ 1, row 7→ 2, col 7→ 2], res 7→ Brick , n 7→ 5],
181 [coords 7→ [arr 7→ 1, row 7→ 2, col 7→ 3], res 7→ Grain, n 7→ 6],
182 [coords 7→ [arr 7→ 1, row 7→ 2, col 7→ 4], res 7→ Wool , n 7→ 11],

4

183 [coords 7→ [arr 7→ 1, row 7→ 2, col 7→ 5], res 7→ bot , n 7→ bot],

185 Bottom Row of Island

186 [coords 7→ [arr 7→ 0, row 7→ 3, col 7→ 1], res 7→ bot , n 7→ bot],
187 [coords 7→ [arr 7→ 0, row 7→ 3, col 7→ 2], res 7→ bot , n 7→ bot],
188 [coords 7→ [arr 7→ 0, row 7→ 3, col 7→ 3], res 7→ bot , n 7→ bot],
189 [coords 7→ [arr 7→ 0, row 7→ 3, col 7→ 4], res 7→ bot , n 7→ bot],
190 [coords 7→ [arr 7→ 0, row 7→ 3, col 7→ 5], res 7→ bot , n 7→ bot]
191 }

193

195 isAdjacent(t1, t2)
∆
=

196 ∧ t1 ∈ M ∧ t2 ∈ M
197 ∧ let
198 arr1

∆
= t1.coords.arr

199 row1
∆
= t1.coords.row

200 col1
∆
= t1.coords.col

201 arr2
∆
= t2.coords.arr

202 row2
∆
= t2.coords.row

203 col2
∆
= t2.coords.col

204 deltas
∆
=

205 if arr1 = 0
206 then
207 Top-left, Top-right, Left, Right, Bottom-left, Bottom-right

208 {⟨1, − 1, 0⟩, ⟨1, − 1, 1⟩, ⟨0, 0, − 1⟩, ⟨0, 0, 1⟩, ⟨1, 0, 0⟩, ⟨1, 0, 1⟩}
209 else
210 Top-left, Top-right, Left, Right, Bottom-left, Bottom-right

211 {⟨ − 1, 0, − 1⟩, ⟨ − 1, 0, 0⟩, ⟨0, 0, − 1⟩, ⟨0, 0, 1⟩, ⟨ − 1, 1, − 1⟩, ⟨ − 1, 1, 0⟩}
212 in
213 ∃ d ∈ deltas : arr2 = arr1 + d [1] ∧ row2 = row1 + d [2] ∧ col2 = col1 + d [3]

215 allAdjacent(t1, t2, t3)
∆
=

216 ∧ t1 ∈ M ∧ t2 ∈ M ∧ t3 ∈ M
217 ∧ isAdjacent(t1, t2)
218 ∧ isAdjacent(t1, t3)
219 ∧ isAdjacent(t2, t3)

221 isCenterTile(t)
∆
=

222 ∧ t ∈ M
223 ∧ t .coords = [arr 7→ 1, row 7→ 1, col 7→ 1]

225 isCoast(t1, t2)
∆
=

226 ∧ t1 ∈ M ∧ t2 ∈ M
227 ∧ ¬isCenterTile(t1) ∧ ¬isCenterTile(t2)
228 ∧ ∨ t1.res = bot ∧ t2.res ̸= bot
229 ∨ t1.res ̸= bot ∧ t2.res = bot

5

231 All viable coordinate triplets

232 CT
∆
= {{k [1], k [2], k [3]} : k ∈ {t ∈ M ×M ×M :

233 allAdjacent(t [1], t [2], t [3]) ∧ (t [1].res ̸= bot ∨ t [2].res ̸= bot ∨ t [3].res ̸= bot)}}
234 All viable coordinate pairs

235 CD
∆
= {{k [1], k [2]} : k ∈ {t ∈ M ×M :

236 isAdjacent(t [1], t [2]) ∧ (t [1].res ̸= bot ∨ t [2].res ̸= bot)}}

238 assume
239 Map is a subset of all possible map tiles

240 ∧M ⊆ MT
241 Map has no duplicate tiles

242 ∧ ∀ t1, t2 ∈ M : t1.coords = t2.coords ≡ t1 = t2
243 all Wharf tiles are part of the map

244 ∧ ∀w ∈ W : w .wt ∈ WT ∧ ∀ t ∈ w .coords : t ∈ M
245 All Wharfs are on the coast

246 ∧ ∀w ∈ W : ∃ t1, t2 ∈ w .coords : isAdjacent(t1, t2) ∧ isCoast(t1, t2)

248

250 reverse(seq)
∆
=

251 let recursive helper()
252 helper(s)

∆
=

253 if s = ⟨⟩ then s
254 else Append(helper(Tail(s)), Head(s))
255 in helper(seq)

257 getIndex (el , seq)
∆
=

258 let recursive helper()
259 helper(s)

∆
=

260 if s = el then 0
261 else if Head(s) = el
262 then 1
263 else 1 + helper(Tail(s))
264 in helper(seq)

266 SumFunc(func)
∆
=

267 let recursive helper(,)
268 helper(f , D)

∆
=

269 if D = {} then 0
270 else let d

∆
= choose e ∈ D : true

271 in f [d] + helper(f , D \ {d})
272 in helper(func, domain func)

274 AddRec(rec1, rec2)
∆
= [i ∈ domain rec1 7→ rec1[i] + rec2[i]]

275 SubRec(rec1, rec2)
∆
= [i ∈ domain rec1 7→ rec1[i]− rec2[i]]

276 AddRecEl(rec1, d , n)
∆
= [i ∈ domain rec1 7→ if i = d then rec1[i] + n else rec1[i]]

6

278 SumResFunc(func)
∆
=

279 let recursive helper(,)
280 helper(f , D)

∆
=

281 if D = {} then [Lumber 7→ 0, Brick 7→ 0, Wool 7→ 0, Grain 7→ 0, Ore 7→ 0]
282 else let c

∆
= choose c ∈ D : true

283 in
284 if c.res = Lumber then AddRecEl(helper(f , D \ {c}), “Lumber”, f [c])
285 else if c.res = Brick then AddRecEl(helper(f , D \ {c}), “Brick”, f [c])
286 else if c.res = Wool then AddRecEl(helper(f , D \ {c}), “Wool”, f [c])
287 else if c.res = Grain then AddRecEl(helper(f , D \ {c}), “Grain”, f [c])
288 else if c.res = Ore then AddRecEl(helper(f , D \ {c}), “Ore”, f [c])
289 else AddRecEl(helper(f , D \ {c}), Lumber , 0)
290 in helper(func, domain func)

292 SumResRecs(func)
∆
=

293 let recursive helper(,)
294 helper(f , D)

∆
=

295 if D = {} then [Lumber 7→ 0, Brick 7→ 0, Wool 7→ 0, Grain 7→ 0, Ore 7→ 0]
296 else let d

∆
= choose e ∈ D : true

297 in AddRec(f [d], helper(f , D \ {d}))
298 in helper(func, domain func)

300 IterateRec(rec)
∆
= [d ∈ domain rec 7→ (rec)[d]]

302

304 variables SU , Setup State

305 G Game State

306 Bank

307 BNK
∆
=

308 [
309 RC : [Lumber : 0 . . 19, Brick : 0 . . 19, Wool : 0 . . 19,
310 Grain : 0 . . 19, Ore : 0 . . 19],
311 DC : [Monopoly : 0 . . 2, YearOfPlenty : 0 . . 2, RoadBuilding : 0 . . 2,
312 Knight : 0 . . 14, VictoryPoint : 0 . . 5]
313]
314 Discard Pile

315 DP
∆
= [Monopoly : 0 . . 2, YearOfPlenty : 0 . . 2, RoadBuilding : 0 . . 2]

316 Player Hand

317 PH
∆
= [

318 RC : [Lumber : 0 . . 19, Brick : 0 . . 19, Wool : 0 . . 19, Grain : 0 . . 19, Ore : 0 . . 19],
319 DC : [BC : BCT ,
320 AC : BCT ,
321 UC : UCT
322]
323]

7

324 Hands

325 H
∆
= [Players → PH]

326 Player Buildings

327 PB
∆
= [Road : 0 . . 15, Village : 0 . . 5, City : 0 . . 4]

328 Buildings

329 B
∆
= [Players → PB]

330 Settlement Points

331 S
∆
= [CT → [own : Players ∪ {bot}, st : ST ∪ {bot}]]

332 Road Points

333 R
∆
= [CD → [own : Players ∪ {bot}]]

335 TypeOK
∆
=

336 Setup State

337 ∧ SU ∈ [sup : SUP , ap : Players]
338 Game State

339 ∧G ∈ [ap : Players, bnk : BNK , dp : DP , h : H , b : B , s : S , r : R, ba : M , tp : TP]

341

343 isAdjacentSettlement(s1, s2)
∆
=

344 ∧ s1 ∈ domain G .s
345 ∧ s2 ∈ domain G .s
346 ∧ ∃ t1, t2 ∈ s1 : t1 ̸= t2 ∧ t1 ∈ s2 ∧ t2 ∈ s2

348 isAdjacentRoadToSettlement(s, r)
∆
=

349 ∧ s ∈ domain G .s
350 ∧ r ∈ domain G .r
351 ∧ r ⊆ s

353 isAdjacentRoad(r1, r2)
∆
=

354 ∧ r1 ∈ domain G .r
355 ∧ r2 ∈ domain G .r
356 ∧ ∃ s ∈ domain G .s :
357 ∧ isAdjacentRoadToSettlement(s, r1)
358 ∧ isAdjacentRoadToSettlement(s, r2)

360 settlementHasNoBandit(s)
∆
=

361 ∧ s ∈ domain G .s
362 ∧ ¬G .ba ∈ s

364 roadHasNoBandit(r)
∆
=

365 ∧ r ∈ domain G .r
366 ∧ ¬G .ba ∈ r

368 tileHasNoBandit(t)
∆
=

369 ∧ t ∈ M
370 ∧ ¬G .ba ̸= t

8

372 buildable(s)
∆
=

373 ∧ s ∈ domain G .s
374 ∧ settlementHasNoBandit(s)
375 ∧ ∀ as ∈ domain G .s :
376 isAdjacentSettlement(s, as) ⇒ G .s[as].own = bot

378

380 SetupPhaseOne
∆
=

381 ∧G .tp = bot
382 ∧ SU .sup = PhaseOne
383 choose where to settle with a village

384 ∧ ∃ sp ∈ domain G .s : G .s[sp].own = bot ∧ buildable(sp)
385 choose a road adjacent to the chosen settlement

386 ∧ ∃ rp ∈ domain G .r :
387 ∧G .r [rp].own = bot
388 ∧ isAdjacentRoadToSettlement(sp, rp)
389 ∧ roadHasNoBandit(rp)

391 ∧ G ′ = [G except ! .b[SU .ap].Road = @− 1,
392 ! .b[SU .ap].Village = @− 1,
393 ! .s[sp] = [own 7→ SU .ap, st 7→ Village],
394 ! .r [rp] = [own 7→ SU .ap]
395]
396 ∧ if getIndex (SU .ap, P) = Cardinality(Players)
397 then
398 SU ′ = [SU except ! .ap = reverse(P)[1],
399 ! .sup = PhaseTwo
400]
401 else
402 SU ′ = [SU except ! .ap = P [(getIndex (SU .ap, P) + 1)]]

404 SetupPhaseTwo
∆
=

405 ∧G .tp = bot
406 ∧ SU .sup = PhaseTwo
407 choose where to settle with the second village

408 ∧ ∃ sp ∈ domain G .s :
409 ∧G .s[sp].own = bot
410 ∧ buildable(sp)
411 choose a road adjacent to the chosen settlement

412 ∧ ∃ rp ∈ domain G .r :
413 ∧G .r [rp].own = bot
414 ∧ isAdjacentRoadToSettlement(sp, rp)
415 ∧ roadHasNoBandit(rp)
416 ∧ SU ′ = [SU except ! .ap = if getIndex (SU .ap, reverse(P)) = Cardinality(Players) then @
417 else reverse(P)[(getIndex (SU .ap, reverse(P)) + 1)]]

9

418 receive resources from adjacent tiles to chosen settlement

419 ∧ let gain
∆
= SumResFunc([c ∈ {s ∈ sp : s.res ̸= bot} 7→ 1])

420 in G ′ = [G except ! .h[SU .ap].RC = gain,
421 ! .bnk .RC = SubRec(@, gain),
422 ! .b[SU .ap].Road = @− 1,
423 ! .b[SU .ap].Village = @− 1,
424 ! .s[sp] = [own 7→ SU .ap, st 7→ Village],
425 ! .r [rp] = [own 7→ SU .ap],
426 ! .tp = if getIndex (SU .ap, reverse(P)) = Cardinality(Players)
427 then DiceRoll
428 else bot
429]

431

433 hasSettlementOnTile(t , p)
∆
=

434 ∧ ∃ s ∈ domain G .s : G .s[s].own = p
435 ∧ t ∈ s

437 BanditMoves
∆
= {t ∈ M : t ̸= G .ba ∧ t .res = bot ⇒ isCenterTile(t)}

439 SumResourcesSinglePlayer(p)
∆
= SumFunc(IterateRec(G .h[p].RC))

441 SumResourceAllPlayers(rct)
∆
= SumFunc([p ∈ Players 7→ (G .h[p].RC)[rct]])

443 ResourceGainPlayer(p, d)
∆
=

444 let
445 V

∆
= {s ∈ union {sp ∈ domain G .s : G .s[sp].own = p ∧G .s[sp].st = Village} : s.n = d}

446 C
∆
= {s ∈ union {sp ∈ domain G .s : G .s[sp].own = p ∧G .s[sp].st = City} : s.n = d}

447 in
448 SumResFunc([c ∈ (V ∪ C) 7→ if c ∈ C then 2 else 1])

450 gather all resource records with a sum between 4 and 7

451 ResourceRecsWithSpecificSum
∆
= {rec ∈ [Lumber : 0 . . 6, Brick : 0 . . 6, Wool : 0 . . 6,

452 Grain : 0 . . 6, Ore : 0 . . 6] :
453 ∧ SumFunc(IterateRec(rec)) ≥ 4
454 ∧ SumFunc(IterateRec(rec)) ≤ 7
455 }

457

459 DiceRollPhase
∆
=

460 ∧ G .tp = DiceRoll
461 ∧ ∃ d ∈ 2 . . 12 :
462 if d = 7
463 then ∃ loss ∈ [Players → ResourceRecsWithSpecificSum] :
464 ∧ ∀ p ∈ Players :
465 if SumResourcesSinglePlayer(p) ≤ 7

10

466 then loss[p] = [Lumber 7→ 0, Brick 7→ 0, Wool 7→ 0,
467 Grain 7→ 0, Ore 7→ 0]
468 else
469 ∧ SumFunc(IterateRec(loss[p])) = SumResourcesSinglePlayer(p)÷ 2
470 ∧ ∀ f ∈ domain G .h[p].RC :
471 loss[p][f] ∈ 0 . . G .h[p].RC [f]
472 choose a tile to move the bandit to

473 ∧ ∃ t ∈ BanditMoves : ∃ q ∈ Players : q ̸= G .ap ∧ hasSettlementOnTile(t , q)
474 random resource from adjacent player of t

475 ∧ ∃ res ∈ domain G .bnk .RC : G .h[q].RC [res] ≥ 0
476 ∧G ′ = [G except ! .bnk .RC = AddRec(@, SumResRecs(loss)),
477 ! .h = [p ∈ Players 7→
478 Can steal resource from player (even after loosing resources)

479 [RC 7→ if G .h[q].RC [res]− loss[q][res] > 0
480 then if p = G .ap then AddRecEl(
481 SubRec(G .h[p].RC , loss[p]),
482 res,
483 1)
484 else if p = q then AddRecEl(
485 SubRec(G .h[p].RC , loss[p]),
486 res,
487 − 1)
488 else SubRec(G .h[p].RC , loss[p])
489 else SubRec(G .h[p].RC , loss[p]),
490 Move bought cards to available cards

491 DC 7→ [BC 7→ [Monopoly 7→ 0, YearOfPlenty 7→ 0,
492 RoadBuilding 7→ 0, Knight 7→ 0],
493 AC 7→ AddRec(G .h[p].DC .AC , G .h[p].DC .BC),
494 UC 7→ G .h[p].DC .UC]
495]],
496 ! .ba = t ,
497 ! .tp = Trading
498]
499 ∧ unchanged (SU)
500 else
501 let
502 resource gain for all players given the current dice roll

503 gain
∆
= [p ∈ Players 7→ ResourceGainPlayer(p, d)]

504 in
505 if bank does not have all the resources, do not change state and continue (otherwise will violate typeOK)

506 if ∀ res ∈ domain G .bnk .RC : G .bnk .RC [res] ≥ SumResRecs(gain)[res]
507 then
508 ∧G ′ = [G except ! .bnk .RC = SubRec(@, SumResRecs(gain)),
509 ! .h = [p ∈ Players 7→
510 [RC 7→ AddRec(G .h[p].RC , gain[p]),

11

511 Move bought cards to available cards

512 DC 7→ [BC 7→ [Monopoly 7→ 0, YearOfPlenty 7→ 0,
513 RoadBuilding 7→ 0, Knight 7→ 0],
514 AC 7→ AddRec(G .h[p].DC .AC , G .h[p].DC .BC),
515 UC 7→ G .h[p].DC .UC
516]
517]
518],
519 ! .tp = Trading
520]
521 ∧ unchanged (SU)
522 else unchanged ⟨SU , G⟩

524

526 PlayerPorts(p)
∆
= {w ∈ W : ∃ sp ∈ domain G .s : w .coords ⊆ sp ∧G .s[sp].own = p}

528

530 EmptyTrade
∆
=

531 ∧G .tp = Trading
532 ∧G ′ = [G except ! .tp = Building]
533 ∧ unchanged (SU)

535 TradeFourToOne
∆
=

536 ∧G .tp = Trading
537 choose a resource to trade with

538 ∧ ∃ give ∈ {res ∈ domain G .bnk .RC : G .h[G .ap].RC [res] ≥ 4} :
539 choose a resource to trade for

540 ∃ receive ∈ {res ∈ domain G .bnk .RC : G .bnk .RC [res] > 0} :
541 ∧G ′ = [G except ! .bnk .RC = AddRecEl(AddRecEl(@, give, 4), receive, − 1),
542 ! .h[G .ap].RC = AddRecEl(AddRecEl(@, give, − 4), receive, 1)
543]
544 ∧ unchanged (SU)

546 TradeThreeToOne
∆
=

547 ∧G .tp = Trading
548 choose a resource to trade with (needs 3:1 port)

549 ∧ ∃ give ∈ {res ∈ domain G .bnk .RC :
550 ∧G .h[G .ap].RC [res] ≥ 3
551 ∧ ∃w ∈ PlayerPorts(G .ap) : w .wt = ThreeToOne} :
552 choose a resource to trade for

553 ∧ ∃ receive ∈ {res ∈ domain G .bnk .RC : G .bnk .RC [res] > 0} :
554 ∧G ′ = [G except ! .bnk .RC = AddRecEl(AddRecEl(@, give, 3), receive, − 1),
555 ! .h[G .ap].RC = AddRecEl(AddRecEl(@, give, − 3), receive, 1)
556]
557 ∧ unchanged (SU)

12

558 TradeTwoToOne
∆
=

559 ∧G .tp = Trading
560 choose a resource to trade with (needs specific 2:1 port)

561 ∧ ∃ give ∈ {rct ∈ domain G .bnk .RC :
562 ∧G .h[G .ap].RC [rct] ≥ 2
563 ∧ ∃w ∈ PlayerPorts(G .ap) :
564 ∧ w .wt ∈ RCT
565 ∧ w .wt = RCTMAP [rct]} :
566 choose a resource to trade for

567 ∧ ∃ receive ∈ {rct ∈ domain G .bnk .RC : G .bnk .RC [rct] > 0} :
568 ∧G ′ = [G except ! .bnk .RC = AddRecEl(AddRecEl(@, give, 2), receive, − 1),
569 ! .h[G .ap].RC = AddRecEl(AddRecEl(@, give, − 2), receive, 1)
570]
571 ∧ unchanged (SU)

573

575 RoadCost
∆
= [Lumber 7→ 1, Brick 7→ 1, Wool 7→ 0, Grain 7→ 0, Ore 7→ 0]

576 VillageCost
∆
= [Lumber 7→ 1, Brick 7→ 1, Wool 7→ 1, Grain 7→ 1, Ore 7→ 0]

577 CityCost
∆
= [Lumber 7→ 0, Brick 7→ 0, Wool 7→ 0, Grain 7→ 2, Ore 7→ 3]

578 DevCardCost
∆
= [Lumber 7→ 0, Brick 7→ 0, Wool 7→ 1, Grain 7→ 1, Ore 7→ 1]

580 CanBuildRoad
∆
=

581 Player has the needed resources and game pieces

582 ∧ ∀ res ∈ domain RoadCost : G .h[G .ap].RC [res] ≥ RoadCost [res]
583 ∧G .b[G .ap].Road > 0

585 CanBuildVillage
∆
=

586 Player has the needed resources and game pieces

587 ∧ ∀ res ∈ domain VillageCost : G .h[G .ap].RC [res] ≥ VillageCost [res]
588 ∧G .b[G .ap].Village > 0

590 CanBuildCity
∆
=

591 Player has the needed resources and game pieces

592 ∧ ∀ res ∈ domain CityCost : G .h[G .ap].RC [res] ≥ CityCost [res]
593 ∧G .b[G .ap].City > 0

595 CanBuyDevCard
∆
=

596 Player has the needed resources and bank still has cards

597 ∧ ∀ res ∈ domain DevCardCost : G .h[G .ap].RC [res] ≥ DevCardCost [res]
598 ∧ SumFunc(IterateRec(G .bnk .DC)) > 0

600 RoadsOnMap
∆
= {rp ∈ domain G .r : G .r [rp].own ̸= bot}

601 PlayerRoadsOnMap(p)
∆
= {rp ∈ domain G .r : G .r [rp].own = p}

602 AllRoadSets
∆
= [p ∈ Players 7→ {s ∈ subset PlayerRoadsOnMap(p) : Cardinality(s) ≥ 5}]

603 isPath(seq)
∆
=

604 ∧ ∀ i ∈ 1 . . (Len(seq)− 1) :

13

605 ∧ seq [i] ∈ RoadsOnMap
606 ∧ seq [i + 1] ∈ RoadsOnMap
607 ∧ isAdjacentRoad(seq [i], seq [i + 1])
608 ∧ ∀ i , j ∈ domain seq : i ̸= j ⇒ seq [i] ̸= seq [j] ∧G .r [seq [i]].own = G .r [seq [j]].own

610 Max (set)
∆
= choose el ∈ set : ∀n ∈ set : el ≥ n

612 AllPaths
∆
= [p ∈ Players 7→ {Cardinality(r) :

613 r ∈ {rt ∈ AllRoadSets[p] :
614 rt ̸= {} ∧ isPath(chooseSeq(rt))}}]

616 PlayerPoints(p)
∆
=

617 let
618 All Villages and Cities owned by this player

619 V
∆
= {sp ∈ domain G .s : G .s[sp].own = p ∧G .s[sp].st = Village}

620 C
∆
= {sp ∈ domain G .s : G .s[sp].own = p ∧G .s[sp].st = City}

621 Player with the most Knights (threshold at least 3) gets 2 points

622 MightiestArmy
∆
= if

623 ∧G .h[p].DC .UC .Knight ≥ 3
624 ∧ ∀ q ∈ Players :
625 ∧ q ̸= p
626 ∧G .h[p].DC .UC .Knight ≥ G .h[q].DC .UC .Knight
627 then 2
628 else 0
629 Player with the longest road (threshold at least 5) gets 2 points

630 LongestRoad
∆
= if

631 ∧ Cardinality(AllPaths[G .ap]) > 0
632 ∧Max (AllPaths[G .ap]) > 5
633 ∧ ∀ q ∈ Players :
634 ∧ q ̸= p
635 ∧Max (AllPaths[G .ap]) ≥ Max (AllPaths[q])
636 then 2
637 else 0
638 in
639 SumFunc([c ∈ (V ∪ C) 7→ if c ∈ C then 2 else 1]) +
640 G .h[p].DC .UC .VictoryPoint +
641 MightiestArmy +
642 LongestRoad

644

646 EmptyBuild
∆
=

647 ∧G .tp = Building
648 check if a player has enough points to win the game, if not continue

649 ∧G ′ = [G except ! .tp = if PlayerPoints(G .ap) ≥ 10 then top else DiceRoll]
650 ∧ unchanged (SU)

14

652 BuildRoad
∆
=

653 ∧G .tp = Building
654 ∧ CanBuildRoad
655 choose a road

656 ∧ ∃ rp ∈ domain G .r : G .r [rp].own = bot ∧ roadHasNoBandit(rp) ∧
657 either there is an adjacent road or settlement, owned by the player

658 (∃ rpt ∈ domain G .r : (isAdjacentRoad(rp, rpt) ∧G .r [rpt].own = G .ap) ∨
659 ∃ sp ∈ domain G .s : G .s[sp].own = G .ap ∧ isAdjacentRoadToSettlement(sp, rp))
660 ∧G ′ = [G except ! .bnk .RC = AddRec(@, RoadCost),
661 ! .h[G .ap].RC = SubRec(@, RoadCost),
662 ! .b[G .ap].Road = @− 1,
663 ! .r [rp] = [own 7→ G .ap]
664]
665 ∧ unchanged (SU)

667 BuildVillage
∆
=

668 ∧G .tp = Building
669 ∧ CanBuildVillage
670 choose a space for a village

671 ∧ ∃ sp ∈ domain G .s : G .s[sp].own = bot ∧ buildable(sp) ∧
672 there is an adjacent road owned by the player

673 ∃ rp ∈ domain G .r : G .r [rp].own = G .ap ∧ isAdjacentRoadToSettlement(sp, rp)
674 ∧G ′ = [G except ! .bnk .RC = AddRec(@, VillageCost),
675 ! .h[G .ap].RC = SubRec(@, VillageCost),
676 ! .b[G .ap].Village = @− 1,
677 ! .s[sp] = [own 7→ G .ap, st 7→ Village]
678]
679 ∧ unchanged (SU)

681 BuildCity
∆
=

682 ∧G .tp = Building
683 ∧ CanBuildCity
684 choose a village to upgrade

685 ∧ ∃ sp ∈ domain G .s : G .s[sp].own = G .ap ∧G .s[sp].st = Village ∧
686 settlementHasNoBandit(sp)
687 ∧G ′ = [G except ! .bnk .RC = AddRec(@, CityCost),
688 ! .h[G .ap].RC = SubRec(@, CityCost),
689 ! .b[G .ap].Village = @+ 1,
690 ! .b[G .ap].City = @− 1,
691 ! .s[sp] = [own 7→ G .ap, st 7→ City]
692]
693 ∧ unchanged (SU)

695 BuyDevCard
∆
=

696 ∧G .tp = Building
697 ∧ CanBuyDevCard

15

698 randomly get a development card, Victory Points are instantly revealed

699 ∧ ∃ dc ∈ domain G .bnk .DC : G .bnk .DC [dc] > 0
700 ∧G ′ = [G except ! .bnk .RC = AddRec(@, DevCardCost),
701 ! .h[G .ap].RC = SubRec(@, DevCardCost),
702 ! .bnk .DC = AddRecEl(@, dc, − 1),
703 ! .h[G .ap].DC = if dc = “VictoryPoint”
704 then [BC 7→ @.BC ,
705 AC 7→ @.AC ,
706 UC 7→ AddRecEl(@.UC , dc, 1)
707]
708 else [BC 7→ AddRecEl(@.BC , dc, 1),
709 AC 7→ @.AC ,
710 UC 7→ @.UC
711]
712]
713 ∧ unchanged (SU)

715

717 Monopoly card steals all cards of a chosen resource in the hand of other players.

718 The card is put into the discard pile after playing.

719 PlayMonopoly
∆
=

720 ∧ ∃ res ∈ domain G .bnk .RC :
721 let gain

∆
= SumResourceAllPlayers(res)

722 in
723 G ′ = [G except ! .dp.Monopoly = @+ 1,
724 ! .h = [p ∈ Players 7→
725 Monopolize one resource from all players

726 [RC 7→ if p = G .ap then AddRecEl(
727 G .h[p].RC ,
728 res,
729 (gain −G .h[p].RC [res]))
730 else AddRecEl(
731 G .h[p].RC ,
732 res,
733 −G .h[p].RC [res]),
734 Move bought cards to available cards

735 DC 7→ if p = G .ap
736 then [BC 7→ G .h[p].DC .BC ,
737 AC 7→ AddRecEl(
738 G .h[p].DC .AC ,
739 “Monopoly”,
740 − 1),
741 UC 7→ G .h[p].DC .UC
742]

16

743 else G .h[p].DC
744]
745]
746]
747 ∧ unchanged (SU)

749 Year of plenty lets the player choose two resource cards to receive. Put onto the discard pile after playing.

750 PlayYearOfPlenty
∆
=

751 ∃ res1 ∈ domain G .bnk .RC : G .bnk .RC [res1] > 0 ∧
752 ∃ res2 ∈ domain G .bnk .RC : G .bnk .RC [res2] > 0
753 ∧G ′ = [G except ! .bnk .RC = AddRecEl(AddRecEl(@, res1, − 1), res2, − 1),
754 ! .h[G .ap].RC = AddRecEl(AddRecEl(@, res1, 1), res2, 1),
755 ! .h[G .ap].DC .AC .YearOfPlenty = @− 1,
756 ! .dp.YearOfPlenty = @+ 1
757]
758 ∧ unchanged (SU)

760 The player can place two roads onto the map without paying. Put onto the discard pile after playing.

761 PlayRoadBuilding
∆
=

762 ∧G .b[G .ap].Road ≥ 2
763 ∧ ∃ rp1 ∈ domain G .r : G .r [rp1].own = bot ∧ roadHasNoBandit(rp1) ∧
764 Adjacent to a road the player owns

765 (∃ rpt ∈ domain G .r : (isAdjacentRoad(rp1, rpt) ∧G .r [rpt].own = G .ap) ∨
766 Adjacent to a settlement the player owns

767 ∃ sp ∈ domain G .s : G .s[sp].own = G .ap ∧ isAdjacentRoadToSettlement(sp, rp1))
768 ∧ ∃ rp2 ∈ domain G .r : G .r [rp2].own = bot ∧ rp1 ̸= rp2 ∧ roadHasNoBandit(rp2) ∧
769 Adjacent to the newly built road

770 (isAdjacentRoad(rp1, rp2) ∨
771 Adjacent to a road the player owns

772 ∃ rpt ∈ domain G .r : (isAdjacentRoad(rp2, rpt) ∧G .r [rpt].own = G .ap) ∨
773 Adjacent to a settlement the player owns

774 ∃ sp ∈ domain G .s : G .s[sp].own = G .ap ∧ isAdjacentRoadToSettlement(sp, rp2))
775 ∧G ′ = [G except ! .h[G .ap].DC .AC .RoadBuilding = @− 1,
776 ! .dp.RoadBuilding = @+ 1,
777 ! .b[G .ap].Road = @− 2,
778 ! .r [rp1] = [own 7→ G .ap],
779 ! .r [rp2] = [own 7→ G .ap]
780]
781 ∧ unchanged (SU)

783 Move the bandit and steal a resource if another player is adjacent to the robbers field.

784 Knight cards are unveiled after activation and work towards the mightiest army points.

785 PlayKnight
∆
=

786 ∃ t ∈ BanditMoves : ∃ q ∈ Players : q ̸= G .ap ∧ hasSettlementOnTile(t , q) ∧
787 random resource from adjacent player of t

788 ∃ res ∈ domain G .bnk .RC : G .h[q].RC [res] ≥ 0 ∧

17

789 Can steal resource from player

790 if G .h[q].RC [res] > 0
791 then
792 ∧G ′ = [G except ! .h[G .ap].RC = AddRecEl(G .h[G .ap].RC , res, 1),
793 ! .h[q].RC = AddRecEl(G .h[q].RC , res, − 1),
794 ! .h[G .ap].DC .AC .Knight = @− 1,
795 ! .h[G .ap].DC .UC .Knight = @+ 1,
796 ! .ba = t
797]
798 ∧ unchanged (SU)
799 else
800 ∧G ′ = [G except ! .h[G .ap].DC .AC .Knight = @− 1,
801 ! .h[G .ap].DC .UC .Knight = @+ 1,
802 ! .ba = t
803]
804 ∧ unchanged (SU)

806 Play a card in the Available Card set of a players hand

807 PlayDevCard
∆
=

808 ∧G .tp ∈ {Trading , Building}
809 ∧ ∃ dc ∈ domain G .h[G .ap].DC .AC : G .h[G .ap].DC .AC [dc] > 0 ∧
810 if dc = “Monopoly” then unchanged ⟨G , SU ⟩ PlayMonopoly

811 else if dc = “YearOfPlenty” then unchanged ⟨G , SU ⟩ PlayYearOfPlenty

812 else if dc = “RoadBuilding” then unchanged ⟨G , SU ⟩ PlayRoadBuilding

813 else unchanged ⟨G , SU ⟩ PlayKnight

815

817 NrPlayerRoadsOnMap(p)
∆
=

818 SumFunc([d ∈ domain G .r 7→ if G .r [d].own = p then 1 else 0])

820 NrPlayerSettlementOnMap(p, st)
∆
=

821 SumFunc([d ∈ domain G .s 7→ if G .s[d].own = p ∧G .s[d].st = st then 1 else 0])

823 SumDevelopmentAllPlayers(dct)
∆
=

824 if dct ∈ domain G .dp
825 then SumFunc([p ∈ Players 7→ (G .h[p].DC .BC)[dct]]) +
826 SumFunc([p ∈ Players 7→ (G .h[p].DC .AC)[dct]])
827 else if dct = “Knight”
828 then SumFunc([p ∈ Players 7→ (G .h[p].DC .BC)[dct]]) +
829 SumFunc([p ∈ Players 7→ (G .h[p].DC .AC)[dct]]) +
830 SumFunc([p ∈ Players 7→ (G .h[p].DC .UC)[dct]])
831 else SumFunc([p ∈ Players 7→ (G .h[p].DC .UC)[dct]])

833

835 ConservationOfResourceCards
∆
=

18

836 ∀ rct ∈ domain G .bnk .RC :
837 SumResourceAllPlayers(rct) +G .bnk .RC [rct] = RCP [getIndex (rct , RCTST)]

839 ConservationOfBuildings
∆
=

840 ∀ p ∈ Players :
841 ∧G .b[p].Road + NrPlayerRoadsOnMap(p) = BP [1]
842 ∧G .b[p].Village + NrPlayerSettlementOnMap(p, Village) = BP [2]
843 ∧G .b[p].City +NrPlayerSettlementOnMap(p, City) = BP [3]

845 ConservationOfDevelopmentCards
∆
=

846 ∧ ∀ dct ∈ domain G .dp : SumDevelopmentAllPlayers(dct) +
847 G .dp[dct] +
848 G .bnk .DC [dct] =
849 DCP [getIndex (PCTMAP [dct], PCTST)]
850 ∧ SumDevelopmentAllPlayers(“Knight”) +G .bnk .DC .Knight = DCP [4]
851 ∧ SumDevelopmentAllPlayers(“VictoryPoint”) +G .bnk .DC .VictoryPoint = DCP [5]

853

855 Init
∆
=

856 Setup State

857 ∧ SU = [sup 7→ PhaseOne, ap 7→ P [1]]
858 Game State

859 ∧G = [
860 ap 7→ P [1],
861 bnk 7→ [
862 RC 7→ [Lumber 7→ 19, Brick 7→ 19, Wool 7→ 19,
863 Grain 7→ 19, Ore 7→ 19],
864 DC 7→ [Monopoly 7→ 2, YearOfPlenty 7→ 2,
865 RoadBuilding 7→ 2, Knight 7→ 14,
866 VictoryPoint 7→ 5]
867],
868 dp 7→ [Monopoly 7→ 0, YearOfPlenty 7→ 0, RoadBuilding 7→ 0],
869 h 7→ [p ∈ Players 7→ [
870 RC 7→ [Lumber 7→ 0, Brick 7→ 0, Wool 7→ 0,
871 Grain 7→ 0, Ore 7→ 0],
872 DC 7→ [BC 7→ [Monopoly 7→ 0, YearOfPlenty 7→ 0,
873 RoadBuilding 7→ 0, Knight 7→ 0],
874 AC 7→ [Monopoly 7→ 0, YearOfPlenty 7→ 0,
875 RoadBuilding 7→ 0, Knight 7→ 0],
876 UC 7→ [Knight 7→ 0, VictoryPoint 7→ 0]
877]
878]],
879 b 7→ [p ∈ Players 7→ [Road 7→ 15, Village 7→ 5,
880 City 7→ 4]],
881 s 7→ [c ∈ CT 7→ [own 7→ bot , st 7→ bot]],

19

882 r 7→ [c ∈ CD 7→ [own 7→ bot]],
883 ba 7→ [coords 7→ [arr 7→ 1, row 7→ 1, col 7→ 3],
884 res 7→ bot , n 7→ bot],
885 tp 7→ bot
886]

888 Next
∆
=

889 ∨ SetupPhaseOne
890 ∨ SetupPhaseTwo
891 ∨ DiceRollPhase
892 ∨ EmptyTrade
893 ∨ TradeFourToOne
894 ∨ TradeThreeToOne
895 ∨ TradeTwoToOne
896 ∨ EmptyBuild
897 ∨ BuildRoad
898 ∨ BuildVillage
899 ∨ BuildCity
900 ∨ BuyDevCard
901 ∨ PlayDevCard

903 Spec
∆
= Init ∧2[Next]⟨G,SU ⟩

905 WeakFairness
∆
=

906 ∧WF⟨G,SU ⟩(SetupPhaseOne)
907 ∧WF⟨G,SU ⟩(SetupPhaseTwo)
908 ∧WF⟨G,SU ⟩(DiceRollPhase)
909 ∧WF⟨G,SU ⟩(EmptyTrade)
910 ∧WF⟨G,SU ⟩(TradeFourToOne)
911 ∧WF⟨G,SU ⟩(TradeThreeToOne)
912 ∧WF⟨G,SU ⟩(TradeTwoToOne)
913 ∧WF⟨G,SU ⟩(EmptyBuild)
914 ∧WF⟨G,SU ⟩(BuildRoad)
915 ∧WF⟨G,SU ⟩(BuildVillage)
916 ∧WF⟨G,SU ⟩(BuildCity)
917 ∧WF⟨G,SU ⟩(BuyDevCard)
918 ∧WF⟨G,SU ⟩(PlayDevCard)

920 FairSpec
∆
=

921 ∧ Spec
922 ∧WeakFairness

924 GameEnded
∆
= G .tp = top

925 EventuallyAlwaysGameEnded
∆
= 32GameEnded

927 theorem Liveness
∆
= FairSpec ⇒ EventuallyAlwaysGameEnded

928 theorem Safety
∆
= Spec ⇒ ∧ TypeOK

20

929 ∧ ConservationOfResourceCards
930 ∧ ConservationOfDevelopmentCards
931 ∧ ConservationOfBuildings

933

\ * Modification Histor

\ * Last modified Wed Apr 23 17:46:25 CEST 2025 by tim m

\ * Created Tue Apr 22 17:19:51 CEST 2025 by tim m

21

Appendix B

Game Rules

The next pages provide a complete copy of the Game Rules for reference. To the best
of our knowledge, this is permitted under ”fair use” for academic purposes.

70

Klaus Teuber

Game RulesGame Rules
&& Almanac Almanac

22

Dear Settlers,
To make it as easy as possible for you to start playing Catan®, we use an award-winning rules system, which consists

of 3 parts. First, if you do not know how to play Catan, please read the Game Overview on page 16 (the back cover).
Next, read the Game Rules on pages 2-6 (red borders) and start to play the game. If you have questions during the
game, consult the Catan Almanac on pages 6-15 (gold borders).

Now you are ready for your first adventure on Catan. Have fun settling this new land together!
— Klaus Teuber

You can find further information at:
catan.com catanstudio.com klausteuber.com

Game Rules
These 4-page rules (pages 2-5) contain all the important

information that you need to play!

If you need more information during the game, you can look
up keywords (marked Y) in the “Almanac,” which follows
these rules.

Game Components
•	19 terrain hexes (tiles)

•	6 sea frame pieces

•	9 harbor pieces

•	18 circular number tokens

•	95 resource cards (bearing the symbols for the brick,
grain, lumber, ore, and wool resources)

•	25 development cards (14 knight cards,
6 progress cards, 5 victory point cards)

•	4 “Building Costs” cards

•	2 special cards: “Longest Road” & “Largest Army”

•	16 cities (4 of each color, shaped like churches)

•	20 settlements (5 of each color, shaped like houses)

•	60 roads (15 of each color, shaped like bars)

•	2 dice (1 yellow, 1 red)

•	1 robber

•	1 “Game Rules & Almanac” booklet

Constructing The Island
The frame pieces hold the board together and prevent

the pieces from moving after the board is in place. Before
building the island, assemble the frame by matching the
numbers at the ends of the frame pieces together (i.e., 1-1,
2-2, etc.).

You can then construct the island of Catan using the 19
terrain hexes as shown on page 3.

Starting Set-up for Beginners
You can play the game Catan on a variable game board.

For your first game, however, we suggest that you use the
“Starting Set-up for Beginners Y.” (See Illus. A on page 3.)
This set-up is well-balanced for all players.

Before your first game, you must remove the die-cut
components from the cardboard holders. Carefully punch
out and separate the pieces. When punching tiles out of the
die-cut sheets, always push the tiles through from the front,
“cut” side (pushing from the back may cause the tiles to rip).

Lay out the map as specified in Illustration A (or on the
back of this booklet).

First, assemble the frame as shown. Second, create Catan
by placing the 19 terrain hexes on the table—again as
shown. Third, place the circular number tokens on top of
the designated terrain hexes. Finally, place your settlements
and roads.

Africa is spring and we walk five paths toward the sun

33

Starting Set-up for Experienced Players
It is more fun to play with a variable game board—with the

game board laid out randomly. The board changes each game.
If you would like to use the variable set-up, you can find the
guidelines in the Almanac under Set-up, Variable Y. Also look
for useful tips under Set-up Phase Y and Tactics Y.

Setting Up the Game
Select a color and take your 5 settlements, 4 cities, and

15 roads (no more and no less!). Place your 2 roads and
your 2 settlements on the game board. Place your remaining
settlements, roads, and cities down in front of you.

Note: If you are playing a 3-player game, nobody plays the
red position indicated on the starting map.

Take your color’s building costs card. (See Illustration B.)

Place the special cards “Longest Road” and “Largest Army”
beside the game board along with the 2 dice.

Sort the resource cards into 5 stacks and put them face up
next to the game board.
Shuffle the development
cards and place them face
down by the board.

You receive resources Y
for each terrain hex
around your starting
settlement marked
with a white star HH
(see Illustration A). Take
the appropriate resource
cards from their stacks.

99
••••••••

22
••

88
••••••••••

1010
••••••

55
••••••••

1212
••

55
••••••••

44
••••••

1111
••••

1010
••••••

1111
••••

66
••••••••••

44
••••••

99
••••••••

66
••••••••••

33
••••

33
••••

88
••••••••••

Illustration A
Starting Map
for Beginners
 To make it as easy as possible
for you to get started with
Catan, we use an award-
winning rules system, which
consists of 3 parts—the
Overview, the Game
Rules, and
the Almanac.

 If you’ve never
played Catan,
please read the
game Overview
first—it’s on the
back cover of this
booklet. Next, read the
Game Rules and start
to play. And finally, if you
have questions during the
game, please consult the
Almanac (it begins on page 6).

Odds for
Dice Rolls
2 & 12 = 3%
3 & 11 = 6%
4 & 10 = 8%
5 & 9 = 11%
6 & 8 = 14%

7 = 17%Resource Production

RobberRobber

Illustration B

Largest Army

2 Victory Points!
The first player to play 3 Knight cards

gets this card. Another player who plays
more Knight cards takes this card.

• A City replaces an already-built Settlement.
• Usually, you only play 1 development card per
turn, and you cannot play a development card on

the turn it’s built.

Longest Road
2 Victory Points!

This card goes to the player with the
longest road of at least 5 segments.
Another player who builds a longer

road takes this card.

HH

HH

HHHH

Hills
Produce Brick

Forest
Produces Lumber

Mountains
Produce Ore

Fields
Produce Grain

Pasture
Produces Wool

Desert
Produces Nothing

Begin the game with
the resource cards

produced by the
settlements

marked with
white stars.

See HH.

44

Example: See Illustration A. Blue receives 1 brick card,
1 lumber card, and 1 ore card for his leftmost settlement
(i.e., his settlement marked with a star HH).

Each player keeps their resource cards hidden in their hand.
Important: Settlements and
cities may only be placed at
the corners of the terrain
hexes—never along the edges
(see Illustration C). Roads may
only be placed at the edges of
the terrain hexes—1 road per
edge (see Illustration D). The
Distance Rule Y means many
intersections along roads will
remain unoccupied.

Turn Overview
Unless you’re using the Starting

Set-Up for Experienced Players,
the oldest player goes first.
On your turn, you can do the
following in the order listed:

•	You must roll for resource
production Y (the result applies to all players).

•	You may trade Y resource cards with other players and/or
use maritime trade Y.

•	You may build Y roads Y, settlements Y or cities Y and/
or buy development cards Y. You may also play one
development card Y at any time during your turn.

After you’re done, pass the dice to the player to your left, who
then continues the game with step 1.

Tip: For advanced players, we recommend combining the
second and third steps. You can find more details in the
Almanac under “Combined Trade/Build Phase Y.”

The Turn in Detail
1. Resource Production

You begin your turn by rolling both dice. The
sum of the dice determines which terrain hexes
produce resources.

Each player who has a settlement on an intersection  Y that
borders a terrain hex marked with the number rolled receives
1 resource card of the hex’s type. For an example see resource
production Y. If you have 2 or 3 settlements bordering that hex,
you receive 1 resource card for each settlement. You receive
2 resource cards for each city you own that borders that hex.
If there are not enough of a given resource in the supply to
fulfill everyone’s production, then no one receives any of that
resource during that turn (unless it only affects 1 player).

2. Trade Y
Afterwards, you may trade freely (using either or both types of

trades below) to gain needed resource cards:

a) Domestic Trade Y
On your turn, you can trade resource cards with any of the

other players. You can announce which resources you need and
what you are willing to trade for them. The other players can
also make their own proposals and counteroffers.

Important: Players may only trade with the player whose
turn it is. The other players may not trade among themselves.

b) Maritime Trade Y
You can also trade without the other players! During your

turn, you can always trade at 4:1 by putting 4 identical resource
cards back in their stack and taking any 1 resource card of your
choice for it. If you have a settlement or city on a harbor Y, you
can trade with the bank more favorably: at either a 3:1 ratio or,
in certain harbors, at 2:1 (trading the resource type shown).

Important: The 4:1 trade is always possible, even if you do
not have a settlement on a harbor.

3. Build Y
Now you can build. Through building, you can increase your

victory points Y, expand your road network, improve your
resource production, and/or buy useful development cards. To
build, you must pay specific combinations of resource cards
(see the Building Costs Card Y). Take the appropriate number
of roads, settlements, and/or cities from your supply and place
them on the game board. Keep development cards hidden in
your hand.

You cannot build more pieces than what is available in your
pool—a maximum of 5 settlements, 4 cities, and 15 roads.

a) Road Y Requires: Brick & Lumber
A new road must always connect to 1 of your existing roads,

settlements, or cities. Only 1 road can be
built on any given path Y.

The first player to build a continuous
road (not counting forks) of at least 5
road segments receives the special card
“Longest Road Y.” If another player
succeeds in building a longer road than
the one created by the current owner of the “Longest Road”
card, they immediately take the special card (and its 2 victory
points). Tip: This creates a 4 victory point swing!

Illustration C

Illustration D

©
 2

01
5

C
at

an
 G

m
bH

©
 2

01
5

C
at

an
 G

m
bH

=

55

b) Settlement Y Requires: Brick, Lumber, Wool, & Grain
Take special note of the “Distance

Rule” Y: you may only build a
settlement at an intersection if all
3 of the adjacent intersections are
vacant (i.e., none are occupied by any
settlements or cities—even yours).

Each of your settlements must connect to at least 1 of your
own roads. Regardless of whose turn it is (i.e., during any
production phase), when a terrain hex produces resources, you
receive 1 resource card for each settlement you have adjacent
to that terrain hex.

Each settlement is worth 1 victory point.

c) City Y Requires: 3 Ore & 2 Grain
You may only establish a city by

upgrading one of your settlements.

When you upgrade a settlement to a
city, put the settlement (house) piece
back in your supply and replace it with
a city piece (church).

Cities produce twice as many resources as settlements.
You acquire 2 resource cards for an adjacent terrain hex that
produces resources.

Each city is worth 2 victory points.

d) Buying a Development Card Y
Requires: Ore, Wool, & Grain

When you buy a development card,
draw the top card from the deck.
There are 3 different kinds of these
cards: knight Y, progress Y, and
victory point Y. Each has a different
effect (see 4.b, below).

Development cards never go back into the supply, and you
cannot buy development cards if the supply is empty.

Keep your development cards hidden (in your hand) until
you use them, so your opponents can’t anticipate your play.

4. Special Cases
a) Rolling a “7” and Activating the Robber Y

If you roll a “7,” no one receives any resources.

Instead, every player who has more than 7 resource cards
must select half (rounded down) of their resource cards and
return them to the bank.

Then you must move the robber Y. Proceed as follows:

(1) You must move the robber Y immediately to the number
token of any other terrain hex or to the desert Y hex.

(2) Then you steal 1 (random) resource card from an
opponent who has a settlement or city adjacent to the target
terrain hex. The player who is robbed holds their resource
cards face down. You then take 1 card at random. If the
target hex is adjacent to 2 or more players’ settlements or
cities, you choose which one you want to steal from.

Important: If the production number for the hex containing
the robber is rolled, the owners of adjacent settlements and
cities do not receive resources. The robber prevents it.

b) Playing Development Cards Y
At any time during your turn, you may play 1 development

card (put it face up on the table). That card, however, may not
be a card you bought during the same turn (except for a victory
point card, as described below)!

Knight Cards (Purple Frame) Y
If you play a knight card, you must

immediately move the robber. See “Rolling
a ‘7’ and Activating the Robber” above and
follow steps 1 and 2.

Once played, knight cards remain face
up in front of you. The first player to have
3 knight cards in front of themself receives
the special card “Largest Army,” which is
worth 2 victory points. If another player has
more knight cards in front of them than the
current holder of the Largest Army card, they
immediately take the special card and its
2 victory points.

Progress Cards (Green Frame) Y
If you play a progress card, follow its

instructions. Then the card is removed from
the game (i.e., toss it in the box).

Victory Point Cards (Orange Frame) Y
You must keep victory point cards hidden.

You may only reveal them during your turn
and when you are sure that you have 10
victory points—that is, to win the game. Of
course, you can reveal them after the end of
the game if someone else wins. You may play
any number of victory point cards during your
turn, even during the turn you purchase them.

Ending the Game
If you have 10 or more victory points during your turn,

the game ends and you are the winner! If you reach 10 points
when it is not your turn, the game continues until any player
(including you) has 10 points on their turn.

©
 2

01
5

C
at

an
 G

m
bH

©
 2

01
5

C
at

an
 G

m
bH

=

©
 2

01
5

C
at

an
 G

m
bH

©
 2

01
5

C
at

an
 G

m
bH

=

©
 2

01
5

C
at

an
 G

m
bH

©
 2

01
5

C
at

an
 G

m
bH

©
 2

01
5

C
at

an
 G

m
bH

©
 2

01
5

C
at

an
 G

m
bH

©
 2

01
5

C
at

an
 G

m
bH

©
 2

01
5

C
at

an
 G

m
bH

©
 2

01
5

C
at

an
 G

m
bH

©
 2

01
5

C
at

an
 G

m
bH =

Move the robber.
Steal 1 resource from the
owner of a settlement or

city adjacent to the
robber’s new hex.

KNIGHT

©
 2

01
5

C
at

an
 G

m
bH

©
 2

01
5

C
at

an
 G

m
bH

MONOPOLY

When you play this card,
announce 1 type of resource.

All other players must give
you all of their resources

of that type.
©

 2
01

5
C

at
an

 G
m

bH

1 Victory Point!
Reveal this card on your
turn if, with it, you reach

the number of points
required for victory.

LIBRARY

66

Almanac
This “Catan Almanac” contains detailed, alphabetical entries

and examples for Catan. These are not the “Game Rules.”
You do not have to read this material prior to your first game.
Instead, use the Game Rules. Then read this to enjoy the
complete experience.

This almanac includes advanced rules and clarifications. You
can also refer to it if any questions arise during a game.

BB
Build (Building)

You may build on your turn after you have rolled for resource
production and finished trading. To build, you must turn in the
specified combinations of resource cards (see the Building
Costs Cards Y). Return the resource cards to the supply stacks.

You can build as many items and buy as many cards as
you desire—as long as you have enough resources to “pay”
for them and they are still available in the supply. (See
Settlements Y, Cities Y, Roads Y, and Development Cards Y.)

Each player has a supply of 15 roads, 5 settlements, and 4
cities. If you build a city, return the settlement to your supply.
Roads and cities, however, remain on the board until the end of
the game once they are built.

Your turn is over after “building,” and the player to your left
continues the game.

New rule variant: see Combined Trade/Build Phase Y.

Building Costs Cards
The building costs cards show what can be built and which

resources are required. When you pay building costs, you must
return the necessary resources to their supply stacks. You
can build settlements Y and roads Y, upgrade settlements to
cities Y, and buy development cards Y.

CC
Cities

You cannot build a city directly. You can only
upgrade an existing settlement to a city. You pay
the required resources, return the settlement to
your supply, and replace the settlement with a city on the same
intersection Y. Each city is worth 2 victory points. You receive
double resource production (2 resource cards) from the
adjacent terrain hexes whenever those numbers are rolled.

When you build a city, the upgraded settlement piece becomes
available again. You can use it to build another settlement later.

Example: See Illustration E. Claudia, the blue player, rolls
a resource production roll of “8.” She receives 3 ore cards: 1
ore for her settlement and 2 ore for her city. Benny, the red
player, receives 2 lumber for his city.

Hint: It is extremely difficult to win the game without
upgrading settlements to cities. Since you only have 5
settlements available, you can only reach 5 victory points by
only building settlements.

Coast
When a terrain hex borders on the sea (i.e., a frame piece),

it is called a “coast.” You can build a road along a coast. You
can build settlements and upgrade settlements to cities on
intersections that border on the sea. However, since a site on
the coast borders only 1 or 2 terrain hexes, coastal settlements
generate smaller resource yields. Still, coastal sites often lie
on harbors, which allow you to use maritime trade Y to trade
resources at more favorable rates.

Combined Trade/Build Phase
The separation of the trade and build phases was introduced

to make the sequence easier to learn for beginners. We
recommend experienced players ignore this separation.

After rolling for resource production, you can trade and build
in any order (you can trade, build, trade again and build again,
etc.). You can even use a harbor on the same turn you build a
settlement there. Using this method speeds up the game a lot.

Illustration E

EE

88
••••••••••

EE

88
••••••••••

77

DD
Desert

The desert is the only terrain hex that
does not produce resources. The
robber Y starts the game there.
A settlement or a city built
adjacent to the desert yields
fewer resources than those built
next to one of the other terrain types.

Development Cards
There are 3 different kinds of development

cards: Knight Cards Y, Progress Cards Y, and
Victory Point Cards Y.

When you buy a development card, take
the top card of the draw pile into your hand.
Keep your development cards hidden until
you play them. This keeps the other players
in the dark.

You cannot trade or give away development cards.

You may only play 1 development card during your turn—
either 1 knight card or 1 progress card. You can play the
card at any time, even before you roll the dice. You may not,
however, play a card that you bought during the same turn.

Exception: If you buy a card and it is a victory point card Y
that brings you to 10 points, you
may immediately reveal this card
(and all other VP cards) and
win the game.

You only reveal victory point
cards when the game is over—once
you or an opponent reaches 10+
victory points and declares victory.

Distance Rule
You may only build a settlement

on an unoccupied intersection Y and only if none of the 3
adjacent intersections contains a settlement or city.

Example: See Illustration F. Coleman, the blue player, wants
to build a settlement. The settlements marked “A” are already
in play. Coleman cannot build on the intersections marked
“B.” He can only build at intersection “C.”

Domestic Trade
On your turn, you may trade resources with the other players

(after rolling for resource production). You and the other
players negotiate the terms of your trades—such as which
cards will be exchanged. You may trade as many times as you
can, using single or multiple cards. However, you cannot give
away cards, or trade matching resources (“trade” 3 ore for 1
ore, for example).

Important: While it is your turn, you must be a part of
all trades, and the other players may not trade among
themselves.

Example: It is Pete’s turn. He needs one brick to build a
road. He has 2 lumber and 3 ore. Pete asks aloud, “Who will
give me 1 brick for 1 ore?” Beth answers, “If you give me
3 ore, I’ll give you a brick.” Cooper interjects, “I’ll give you
1 brick if you give me 1 lumber and 1 ore.” Pete accepts
Cooper’s offer and trades a lumber and an ore for a brick.
Note Beth may not trade with Cooper, since it is Pete’s turn.

EE
Ending the Game

If you have—or reach—10 victory
points on your turn, the game ends
immediately and you win! You can only
win during your turn. If somehow you find
you have 10 victory points during another
player’s turn, you must wait until your next
turn to claim victory.

Example: Siobhán has 2 settlements
(2 points), the Longest Road special
card (2 points), 2 cities (4 points),
and 2 victory point cards (2 points).
She reveals her 2 victory point cards,
giving her the 10 points needed to win.
She surprises her opponents and
claims victory!

Illustration F

Longest Road

©
20

15
 C

at
an

 G
m

bH

1 Victory Point!

Reveal this card on your

turn if, with it, you reach

the number of points

required for victory.

UNIVERSITY

©
 2

01
5

C
at

an
 G

m
bH

1 Victory Point!

Reveal this card on your

turn if, with it, you reach

the number of points

required for victory.

MARKET

2 Victory Points!
This card goes to the player with the
longest road of at least 5 segments.
Another player who builds a longer

road takes this card.

©
 2

01
5

C
at

an
 G

m
bH

1 Victory Point!
Reveal this card on your

turn if, with it, you reach

the number of points

required for victory.

LIBRARY

©
 2

01
5

C
at

an
 G

m
bH

1 Victory Point!
Reveal this card on your

turn if, with it, you reach

the number of points
required for victory.

MARKET

©
 2

01
5

C
at

an
 G

m
bH

1 Victory Point!
Reveal this card on your

turn if, with it, you reach
the number of points
required for victory.

CHAPEL

©
 2

01
5

C
at

an
 G

m
bH

1 Victory Point!

Reveal this card on your

turn if, with it, you reach

the number of points

required for victory.

GREAT HALL

©
 2

01
5

C
at

an
 G

m
bH

1 Victory Point!
Reveal this card on your
turn if, with it, you reach

the number of points
required for victory.

UNIVERSITY

BB

AA

CC
BB

AA

88

GG
Game Play

Here is a summary of the the game sequence, plus some
more specific entries where you can find details:

(1) Lay out the game board: Set-up, Variable Y

(2) Initial set-up: Set-up Phase Y

(3) Play

The starting player begins the game. The other players follow
in clockwise order.

On your turn, you complete these 3 phases in order:

• Roll for Resource Production Y (the roll applies to
all players)

• Trade Y

• Build Y

You may play 1 development card any time during your turn.

Pass the dice to the player on your left at the end of your turn.
That player then takes their turn using the same 3 phases.

HH
Harbors

Harbors allow you to trade
resources more favorably. In
order to control a harbor, you
must build a settlement on a
coastal intersection Y which
borders the harbor. See also
“Maritime Trade” Y.

II
Intersections

Intersections are
the points where
3 hexes meet. See
Illustration G. You may
only build settlements
on intersections. The
influence (for resource
yields) of settlements
and cities extends into
the 3 adjacent terrain
hexes that form the
intersection.

KK
Knight Cards

When you play a “Knight” development card during your turn,
you must immediately move the robber Y. Place the knight card
face up in front of you.

You must move the robber away from its current spot and
onto the number token of any other terrain hex or on the
desert.

You then steal 1 resource card from a player who has a
settlement or a city adjacent to the robber. If there are 2 or
more such players, you may choose your victim.

The player you elect to rob keeps their cards face down while
you take 1 of their cards at random. If that player has no cards,
you get nothing! (However, you can always ask players about the
number of cards they hold. They must answer truthfully.)

If you are the first player to have 3 knight cards face up in
front of you, you take the “Largest Army” Y special card. This
special card is worth 2 victory points.

If another player has more face-up knight cards than you,
they take the special card and the 2 victory points that go with it.

Example: See Illustration H. On Niall’s turn, he plays a
knight card and moves the robber from the fields hex to the
hills hex with the “4.” Niall may now steal a random resource
card from player A or B.

LL
Largest Army

If you are the first player to play
3 knight cards, you receive this special
card, which is worth 2 victory points.
You place the “Largest Army” card face
up in front of you. If another player
plays more knight cards than you have,
they immediately take the special card.
The 2 victory points likewise count for
the new owner.

Illustration G

Illustration H

JJ

44
••••••

AA
BB

Largest Army

2 Victory Points!
The first player to play 3 knight cards

gets this card. Another player who plays
more knight cards takes this card.

99

Longest Road
If you are the first player to build a

continuous road of at least 5 individual
road pieces, you take this special card
and place it face up in front of you. This
card is worth 2 victory points.

Note: If your road network
branches, you may only count the
single longest branch for purposes of
the longest road.

If you hold the “Longest Road” card and another player
builds a longer road, they immediately take your “Longest
Road” card. They also acquire the 2 bonus victory points.
(Since you also lose the 2 victory points, it is a 4 point swing!)

Example: See Illustration I. Emily, the red player, builds a
continuous road with 7 wooden pieces (A–B). The branch
roads (marked with arrows) are not counted. Emily snags
the “Longest Road” special card.

You can break an opponent’s road by building a settlement on
an unoccupied intersection along that road!

Example: In Illustration I, Coleman (the blue player) builds
a settlement on intersection “C” (which is legal). This breaks
Emily’s road into 2 parts. Emily must give the special card to
Coleman, who now has the Longest Road (and 2 more VPs).

Special Case: If your longest road is broken and you are
tied for longest road, you still keep the “Longest Road” card.
However, if you no longer have the longest road, but two or
more players tie for the new longest road, set the “Longest
Road” card aside. Do the same if no one has a 5+ segment
road. The “Longest Road” card comes into play again when only
1 player has the longest road (of at least 5 road pieces).

MM
Maritime Trade

On your turn, you can trade resources using maritime trade
during the trade phase even without involving another player.

The most basic (and unfavorable) exchange rate is 4:1.
You may trade 4 identical resource cards
to the supply in exchange for
1 resource card of your choice. You
do not need a harbor Y (settlement
at a harbor location) to trade at 4:1,
so when nobody wants to trade…

Example: Benny returns 4 ore cards to the supply and takes
1 lumber card in exchange. Normally, he should first try a
more favorable trade with the other players (domestic trade).

If you have built a settlement or city at a harbor Y location,
you can trade more effectively. There are 2 different kinds of
harbor locations:

Generic Harbor (3:1): Here
you may exchange 3 identical
resource cards for any 1 other
resource card during your
trade phase.

Example: Brad has a settlement
at a generic harbor. He can, for
instance, exchange 3 lumber cards
for 1 wool card.

Special Harbor (2:1): There is
only 1 special harbor for each
type of resource (with the same
symbol). So, if you earn plenty of
a certain type of resource, it can
be useful to build on the special
harbor for that resource type. The
exchange rate of 2:1 only applies
to the resource shown on the
harbor location. A special harbor does not permit you to
trade any other resource type at a more favorable rate (not
even 3:1)!

Example: Ron built a settlement at the ore special harbor.
He may exchange 2 ore cards for any 1 other resource card.
He can also trade 4 ore cards for any 2 other cards. If he
traded 4 wool instead of 4 ore, he would get only 1 card in
return.

Illustration I

©
 2

01
5

C
at

an
 G

m
bH

©
 2

01
5

C
at

an
 G

m
bH

©
 2

01
5

C
at

an
 G

m
bH

©
 2

01
5

C
at

an
 G

m
bH

©
 2

01
5

C
at

an
 G

m
bH:

BB

AA

CC

Longest Road
2 Victory Points!

This card goes to the player with the
longest road of at least 5 segments.
Another player who builds a longer

road takes this card.

1010

NN
Number Tokens

The 18 number tokens are marked with the
numerals “2” through “12.” There is only one “2”
and one “12.” There is no “7.”

The more often a number is rolled, the more often each
associated hex produces resources. Note the size of the
numbers and the dots (pips) beneath the numbers on the
tokens. The taller the number and the larger the quantity of
dots, the more likely it is that number will be rolled. “6” and
“8” (the red numbers) are the most frequently rolled numbers.
They each have 5 dots, because there are 5 ways to roll these
numbers on the 2 dice.

The letters on the back of the number tokens are only used
during the setup phase (see Set-up, Variable Y).

PP
Paths

Paths are defined as the edges where
2 hexes and/or hexes and the frame
meet. Paths run along the border of
2 terrain hexes or between a land hex
and the frame. Only one road Y can be
built on any path. At each end of a path
is an intersection Y.

Progress Cards
Progress cards are a type of development card. They have

green frames. There are 2 each of 3 varieties:

Road Building: If you play this card, you may
immediately place 2 free roads on the board
(according to normal building rules).

Year of Plenty: If you play this card you may
immediately take any 2 resource cards from
the supply stacks. You may use these cards to
build in the same turn.

Monopoly: If you play this card, you must
name 1 type of resource. All the other players
must give you all of the resource cards of
this type that they have in their hands. If an
opponent does not have a resource card of
the specified type, they do not have to give
you anything.

You may play only 1 development card Y during
your turn.

RR
Resource Cards (Resources)

There are 5 different types of resources
(see page 3): grain (from fields), brick (from
hills), ore (from mountains), lumber (from
forest), and wool (from pasture). These
resources are represented by “resource
cards.” You receive these cards as income
from the resource production of these hexes. Resource
production is determined by the dice roll at the beginning
of each turn. You receive your income for each terrain hex
adjacent to your settlements or cities every time the production
number on the hex is rolled (exception: see Robber Y).

Resource Production
On your turn, you must roll the dice for the turn’s resource

production. The number rolled determines which hexes
produce resources. Each number appears twice—except for
“2” and “12,” which only appear once.

All players who have settlements Y or cities Y on the hexes
indicated by the roll receive the yields (resource cards) of those
hexes. Each settlement produces 1 resource card and each city
produces 2 resource cards.

Example: See Illustration J. Loren, the blue player, rolls a
“4,” Her settlement “A” borders a hills hex marked by the
number “4,” so she takes a brick card. If settlement “A” had
been a city, she would have received 2 brick cards. Bridget
owns the red settlement “B” that borders on 2 hexes with the
number “4”: hills and pasture. Bridget takes 1 brick card and
1 wool card from the supply stacks.

It is possible that during the game there will not be enough
resources in the bank to supply all of the yields. If there are not
enough resource cards to give every player all the production
they earn, then no player receives any of that resource that turn.
Exception: If the shortage of resource cards only affects a
single player, give that player as many of these resources as are
left in the supply, and any extras are lost. In either case,
 production of other types of resources is not affected.

©
 2

01
5

C
at

an
 G

m
bH

ROAD BUILDING

Place 2 new roads as if
you had just built them.

©
 2

01
5

C
at

an
 G

m
bH

Take any 2 resources from
the bank. Add them to

your hand. They can be
2 of the same resource or

2 different resources.

YEAR OF PLENTY

©
 2

01
5

C
at

an
 G

m
bH

MONOPOLY

When you play this card,
announce 1 type of resource.

All other players must give
you all of their resources

of that type.

88
••••••••••

44
••••••

33
••••

22
••

88
••••••••••

44
••••••

55
••••••••

AA BB

Illustration J

1111

Resource Trade
In the second phase of your turn, you may trade with

the other players. The other players may not trade among
themselves, only with the player whose turn it is. There are
2 different kinds of trade:

• Domestic trade Y and

• Maritime trade Y.

Roads
The roads connect your

settlements and cities. You
build roads on paths Y. You
cannot build new settlements
without also building roads.
Roads provide victory points
only if you hold the Longest
Road Y special card. Only
1 road may be built on each
path. You can build roads
along the coast.

Example: See Illustration K. Liam, the white player, would
like to build a road. He may build (place) his road on any of
the paths outlined in green. Each of these paths connects to
either Liam’s road or his settlement, and is not blocked by
the blue player’s settlement (see the path outlined in red).

Robber
The robber begins the game in the desert Y.

It is moved only by rolling a “7” Y or playing
a Knight Y card.

If the robber is moved to any other terrain
hex, it prevents that hex from producing
resources. Players with settlements and/or cities adjacent to the
target terrain hex receive no resources from this hex as long as
the robber is in the hex.

“A” and “B” do not receive a brick resource card. This lasts
until the robber is moved again by another “7” or a knight
card. Xander may also take 1 resource card at random from
1 of the players who own settlements “A” or “B”.

Rolling a “7” and Activating the Robber
If you roll a “7” for resource production, none of the players

receive resources. Instead:

(1) Each player counts their resource cards. Any player with
more than 7 resource cards (i.e., 8 or more) must choose
and discard half of them. Return discards to the supply
stacks. If you hold an odd number of cards, round down
(e.g., if you have 9 resource cards, you discard 4).

Example: Alex rolls a “7.” He has only 6 cards in his hand.
Larry has 8 cards and Will has 11. Larry must discard 4 cards
and Will 5 (rounding down).

(2) Then you (the player who rolled the “7”) must move
the robber Y to the number token Y of any other terrain
hex (or to the desert Y hex). This blocks the resource
production of this hex, until the robber moves to another
number token or the desert.

(3) After discarding occurs, you also steal 1 resource card at
random from a player who has a settlement or city adjacent
to this new hex. If there are 2 or more players with
buildings there, you may choose from which one to steal.

The robber must be moved. You may not choose to leave the
robber on the same hex.

After moving the robber, your turn continues with the trade
phase.

See also Knights Y.

SS
Settlements

A settlement is worth 1 victory point.
Settlements are built on intersections Y (where
3 hexes meet or 1 or 2 hexes meet the frame).
You share in all of the resource production of
each terrain hex adjacent to your settlements.

You must meet 2 conditions when building a settlement:

(1)	Your settlement must always connect to 1 or more of your
own roads Y.

(2)	You must observe the Distance Rule Y. For an example of
the distance rule, see Illustration M on page 12.

Example: See Illustration L. It is Xander’s turn and he rolls a
“7.” He must move the robber. The robber was in a fields hex.
Xander places it on the “4” number token of a hills hex. If a
“4” is rolled in the coming turns, the owners of settlements

Illustration L

JJ

44
••••••

AA
BB

RobberRobber

Illustration K

1212

Example: See Illustration M. Olivia, the blue player, wants
to build a new settlement. She may only do so at one of the
intersections marked “B”. She cannot build on “A” because
of the Distance Rule, nor on “C” because no blue road leads
to this intersection.

Note: If you have built all 5 of your settlements, you must
upgrade 1 of your settlements to a city before you can build
another settlement. You will then have the settlement in your
supply, so you can build another settlement.

Set-Up Phase
Begin the “set-up

phase” after you
build the game map
(see Illustration
N and Set-up,
Variable Y).

Everyone chooses
a color and takes the
corresponding game
pieces:

• 5 settlements;

• 4 cities;

• 15 roads; and

• 1 building costs card.

Sort the resource cards into 5 stacks and place them face up
beside the board.

Shuffle the development cards Y and place them face down
beside the resource cards.

Place the 2 special cards and the dice beside the board.

Place the robber in the desert.

The set-up phase has 2 rounds. Each player builds 1 road and
1 settlement per round.

Round One
Each player rolls both dice. The

player who rolls highest is the starting
player and begins.

The starting player places a
settlement on an unoccupied
intersection Y of their choice, then
places a road adjacent to this settlement.

The other players then follow clockwise.

Everyone places 1 settlement and 1 adjoining road.
Important: When placing all other settlements, the Distance
Rule Y (see page 7) always applies!

Round Two
Once all players have built their first settlement, the player

who went last in the first round begins round two. That player
builds their second settlement and its adjacent road.

Important: After the starting player builds, the other players
follow counterclockwise, so the starting player in round
one places their second settlement last.

The second settlement can be placed on any unoccupied
intersection, as long as the Distance Rule is observed. It
doesn’t have to connect to the first settlement. The second road
must attach to the second settlement (pointing in any of the 3
directions).

Each player receives their starting resources immediately after
building their second settlement. For each terrain hex adjacent
to this second settlement, take a corresponding resource card
from the supply.

Note: The starting player (the last to place their second
settlement) begins the game: That player rolls both dice for
resource production. You can find helpful tips about the set-
up phase under “Tactics.”

Set-Up, Variable
Assemble the frame as outlined on pages 2-3.
Note: If you want to vary relative harbor locations slightly,
just shuffle the order of the frame pieces and do not place
the random harbor
pieces as outlined
below in point 2.

Turn the terrain hexes
face down. Shuffle the
terrain hexes.

1. Randomly place
the terrain tiles face
up inside the frame
arranged as shown in
Illustration O.

Illustration M

Suggested Beginners’ Map Set-up

Illustration N

99
••••••••

22
••

88
••••••••••

1010
••••••

55
••••••••

1212
••

55
••••••••

44
••••••

1111
••••

1010
••••••

1111
••••

66
••••••••••

44
••••••

99
••••••••

66
••••••••••

33
••••

33
••••

88
••••••••••

Illustration O

AA
CC BB

BB

BB
AA

1313

2. Now take the
9 harbor pieces (the
small 5-sided pieces
with ships on them)
and randomly place
one on top of each
harbor on the frame.
See Illustration P.

3. Place the 18 number tokens as shown in Illustration Q:

• Sort the number
tokens beside the
board, letter side
face up.

• Place 1 token on
each land hex. Start
at a corner of the
island. Place the
number tokens on
the terrain hexes in
alphabetical order,
proceeding counter-
clockwise toward the center. Skip the desert.

Important: Alternatively, you can use a fully random set-up.
Place 1 token on each land hex. Start at one corner of the
island, and place the number tokens in random order. In
such case, the tokens with the red numbers must not be next
to each other. You may have to swap tokens to ensure that no
red numbers are on adjacent hexes.

Note: The desert never gets a number token. It should be
skipped.

More set-up instructions can be found in “Set-up Phase.” Y

Soldier Cards
Some earlier editions of Catan had soldier cards. These are

now called knight cards. See Knight Cards Y.

Starting Set-Up for Beginners
If you want to use the starting set-up, lay out the board as

shown in Illustration R (and the Game Overview):

•	Assemble the frame exactly as shown in Illustration R.

•	Place the terrain hexes exactly as shown in Illustration R.

• Place 2 settlements and 2 roads of each color as shown.

If only 3 are playing, remove the red pieces.

•	Each player receives the 3 resources from the terrain hexes
adjacent to their settlement marked by the white star.

The oldest player is the starting player. The oldest player takes
the first turn and rolls for resource production.

TT
Tactics

Since you play Catan with a variable map, the tactical
considerations of each game are different. There are,
nevertheless, some common points you should consider:

•	Brick and lumber are the most important resources at the
beginning of the game. You need both to build roads and
settlements. You should try to place at least 1 of your first
settlements on a good forest or hills hex.

•	Do not underestimate the value of harbors. For instance, a
player with settlements or cities on productive fields should
try to build a settlement on the “grain” harbor.

•	Leave enough room to expand when placing your first 2
settlements. Look at your opponents’ sites and roads before
making a placement. Beware of getting surrounded! If you
plan to build toward a harbor, the middle of the island may
be a tricky place for a starting settlement, for it can easily
be cut off from the coast.

•	The more you trade, the better your chances of victory.
Even if it is not your turn, you should offer trades to the
current player!

Illustration Q

55
••••••••

22
••

33
••••

88
••••••••••

1010
•••••• 99

••••••••

1212
••

1111
••••

44
••••••

88
••••••••••

1010
••••••

99
••••••••

44
•••••• 55

••••••••

66
••••••••••

33
••••

1111
••••66

••••••••••

Illustration P

Illustration R

HH

D

HH

99
••••••••

22
••

88
••••••••••

1010
••••••

55
••••••••

1212
••

55
••••••••

44
••••••

1111
••••

1010
••••••

1111
••••

66
••••••••••

44
••••••

99
••••••••

66
••••••••••

33
••••

33
••••

88
••••••••••

RobberRobber

HH

HH

HH HH

1414

Trade
After you roll for resource production, you may trade with

other players (domestic trade Y) or with the bank (maritime
trade Y).

•	You may trade as long as you have resource cards.

•	If you decide not to trade during your turn,
no one can trade.

•	You may trade with another player between your turns,
but only if it is that player’s turn and they elect to trade
with you.

•	You may not trade with the bank during another
player’s turn.

•	You may not give away cards.

•	You may not trade development cards.

•	You may not trade like resources (e.g., 2 wool for 1 wool).

VV
Victory Point Cards

Victory point cards are development cards Y, so they can
be “bought.” These orange
framed development cards
represent important cultural
achievements, represented by
certain buildings.

Each victory point card is
worth 1 victory point. You only
reveal your victory point cards
when you or someone else
wins the game! Keep victory
point cards hidden until you
have 10 points during your
turn and you can declare victory. (You should also reveal them
if someone else wins.)

Hint: Again, keep your victory point cards hidden until the
end of the game. Place them face down in front of you. Of
course, if you have 1 or 2 unused cards face down in front of
you for a long time, the other players will assume that they
are victory point cards.

Victory Points
The first player to reach (be at) 10 victory points (VPs)

on their turn wins the game.

Players acquire victory points (VPs) for the following:

1 settlement = 1 VP

1 city = 2 VPs

Longest Road special card = 2 VPs

Largest Army special card = 2 VPs

Victory point (VP) card = 1 VP

Since each player begins with 2 settlements, each player
begins the game with 2 victory points.

Therefore, you only need 8 more victory points to win the
game!

Hint: In Catan, you will often see an icon of a
rising sun (on VP cards and special VP cards, etc.).
This is the VP symbol. It is a visual reminder for the
things, other than settlements and cities, that earn you VPs.
Each VP symbol you see is worth 1 VP.

©
 2

01
5

C
at

an
 G

m
bH

1 Victory Point!
Reveal this card on your

turn if, with it, you reach

the number of points

required for victory.

LIBRARY

©
 2

01
5

C
at

an
 G

m
bH

1 Victory Point!
Reveal this card on your

turn if, with it, you reach

the number of points
required for victory.

MARKET

©
 2

01
5

C
at

an
 G

m
bH

1 Victory Point!
Reveal this card on your

turn if, with it, you reach
the number of points
required for victory.

CHAPEL

©
 2

01
5

C
at

an
 G

m
bH

1 Victory Point!

Reveal this card on your

turn if, with it, you reach

the number of points

required for victory.

GREAT HALL

©
 2

01
5

C
at

an
 G

m
bH

1 Victory Point!
Reveal this card on your
turn if, with it, you reach

the number of points
required for victory.

UNIVERSITY

A general note on Catan rules. This is the 5th English-
language edition of Catan (aka Settlers of Catan). Over the
years, the rules have been clarified, refined, and occasionally
updated. As of January 1, 2015, all of the rules in this version
of Catan take precedence over any previously-published rules.

= 2 VPs

= 2 VPs

= 2 VPs

= 1 VP

Victory Points in Catan

= 1 VP

©
 2

01
5

C
at

an
 G

m
bH

1 Victory Point!
Reveal this card on your
turn if, with it, you reach

the number of points
required for victory.

UNIVERSITY

Largest Army

2 Victory Points!
The first player to play 3 Knight cards

gets this card. Another player who plays
more Knight cards takes this card.

2 Victory Points!
This card goes to the player with the
longest road of at least 5 segments.
Another player who builds a longer

road takes this card.

Longest Road

1515

Almanac Index
Entries	 Page
Build (Building) . 6
Building Costs Cards . 6
Cities . 6
Coast . 6
Combined Trade/Build Phase 6
Desert . 7
Development Cards . 7
Distance Rule . 7
Domestic Trade . 7
Ending the Game . 7
Game Play . 8
Harbors . 8
Intersections . 8
Knight Cards . 8
Largest Army . 8
Longest Road . 9
Maritime Trade . 9
Number Tokens . 10
Paths . 10
Progress Cards . 10
Resource Cards (Resources) 10
Resource Production 10
Resource Trade . 11
Roads . 11
Robber . 11
Rolling a “7” and Activating the Robber 11
Settlements . 11
Set-up Phase . 12
Set-up, Variable . 12
Soldier Cards . 13
Starting Set-up for Beginners 13
Tactics . 13
Trade . 14
Victory Point Cards . 14
Victory Points . 14

Credits
Designer: Klaus Teuber (klausteuber.com)

Original Development: TM-Spiele GmbH

5th Ed. Development Team: Pete Fenlon, Arnd Fischer,
	 Ron Magin, Benjamin Teuber, and Guido Teuber

Art: Michael Menzel, Pete Fenlon

Art Direction & Graphic Design: Pete Fenlon,
	 Michaela Kienle, and Ron Magin

Production: Ron Magin & Pete Fenlon

Special Thanks: Robert T. Carty, Jr., Coleman Charlton,
Morgan Dontanville, Alex Colón Hernández, Aud Ketilsdatter
(LSKC/354-2), Stephanie Newman, Donna Prior and Kelli
Schmitz.

Original U.S. Product Development: Coleman Charlton, Robert
T. Carty Jr., Pete Fenlon, Nick Johnson, Will Niebling, William Niebling,
Guido Teuber, Larry Roznai, and Alex Yeager
With thanks to: Bridget Roznai, Loren Roznai, Schar Niebling, Peter
Bromley, Darwin Bromley, Trella Bromley, Bill Wordelmann, Elaine
Wordelmann, Lou Rexing, Tom Smith, Keywood Cheeves, Mike Strack,
Benny Teuber, Claudia Teuber, Liam Teuber, Leif Teuber, Emily Johnson,
Olivia Johnston, Karl Roelofs, Arnd Beenen, Gero Zahn, and
Scott Anderson

Copyright © 2020 Catan GmbH and Catan Studio. Catan,
The Settlers of Catan, the “Catan Sun” logo, the “Glowing Yellow
Sun” and “Catan Board” marks, and all marks herein are
trademarks of Catan GmbH and are used under license by Catan
Studio. Published by Catan Studio, 1995 W. County Rd. B2,
Roseville, MN 55113. Phone +1.651.639.1905.

You have purchased a game of the highest quality.
However, if you find any components missing

or damaged, please visit:

www.catanstudio.com/parts
For all other inquiries, contact us at:

info@catanstudio.com

If you would like to
protect your cards in this
game, we recommend
Gamegenic card sleeves.

The badge here
indicates what style of
sleeves and the number
of packs required to
sleeve all of the cards in
this CATAN expansion.

Studio™

catanstudio.com catan.com

1616

The island of Catan lies before you. The isle consists of
19 terrain tiles surrounded by ocean. Your goal is to settle on

Catan, and expand your territory until it becomes the largest and
most glorious in Catan.

There are five productive terrain types and one desert on Catan.
Each terrain type produces a different type of resource (The

desert produces nothing). Each resource you receive is represented
by a card. Here’s what each terrain produces:

You only collect resources if you own a settlement or city
bordering these terrain hexes. In the illustration, the red

settlement [A] borders the “10” mountains and orange settlement
[B] borders the “10” hills. If a “10” is rolled, the red player
receives 1 ore card and the orange player receives 1 brick card.

Since the settlements and cities usually border on 2-3 terrain
types, they can “harvest” up to 3 different resources based on

the dice roll. Here, the white settlement [C] borders on forest,
mountains, and pasture. A settlement at [D] would only harvest the
production from 2 terrain hexes (hills and mountains). Finally, a
settlement at [E] would only harvest the production from 1 terrain
hex (pasture). However [E] is also at a wool harbor.

Since it’s impossible for you to have settlements adjacent to
all terrain hexes and number tokens, you may receive certain

resources only at rare intervals—or never. This is tough, because
building requires specific resource combinations.

For this reason, you can trade with other players. Make them an
offer! A successful trade might yield you a big build!

You can only build a new settlement on an unoccupied
intersection if you have a road leading to that intersection and

the nearest settlement is at least two intersections away.

Carefully consider where you build settlements. The numbers
on the round tokens are depicted in varying sizes. They also

have dots (pips) below the numbers. The taller the
depicted number, and the more pips it has, the more

likely that number is to be
rolled. The red numbers

6 and 8 are the tallest
numbers with the most pips; they

are likely to be rolled most
frequently.

Bottom line: The more
frequently a number is

rolled, the more often
the hexes with those

numbers produce
resources.

You should
consider

settling on
hexes that have

good potential for
production (i.e.

6 and 8 vs. 2 and 12).
However, these same

high-producing hexes are
often the primary target for

the robber.

You begin the game with 2 settlements and 2 roads. Each
settlement is worth 1 victory point. You therefore start the game

with 2 victory points! The first player to acquire 10 victory points on
their turn wins the game.

To gain more victory points, you
must build new roads and

settlements and upgrade your
settlements to cities. Each city
is worth 2 victory points. To
build or upgrade, you need
to acquire resources.

How do you
acquire

resources? It’s
simple. Each
turn, you roll
2 dice to
determine
which terrain
hexes produce
resources. Each
terrain hex is marked
with a round number
token. If, for example, a
“10” is rolled, all terrain
hexes with a “10” number
token produce resources—in
the illustration on the right, those
terrain hexes are a mountains
hex (ore) and a hills hex (brick).

88
••••••••••

D

HH

99
••••••••

22
••

88
••••••••••

1010
••••••

55
••••••••

1212
••

55
••••••••

44
••••••

1111
••••

1010
••••••

1111
••••

66
••••••••••

44
••••••

99
••••••••

66
••••••••••

33
••••

33
••••

88
••••••••••

HarborHarbor

PathPathRobberRobber

IntersectionIntersection

A

B

C

HH
D

HH

HH HH

Hills
Produce Brick

Forest
Produces Lumber

Mountains
Produce Ore

Fields
Produce Grain

Pasture
Produces Wool

Desert
Produces Nothing

E

11

22

33

44

55

66

77

88

99

1010

1111

	Acknowledgements
	Abstract
	Introduction
	Background
	Core Mechanics of Settlers of Catan
	Resources and Building
	Trade
	Game Setup

	Hexagonal Efficient Coordinate System
	Append-only logs
	State machines
	TLA+ and TLC
	TLA+ Notation
	Example

	Model
	Physical Game State
	Overview
	Player Buildings and Hands

	TLA+ Model
	Running Example
	Immutable Definitions
	State Machine Overview
	Game State
	Invariants
	Initial State
	Actions

	Implementation
	Libraries
	Game State
	Representation
	Git Branches and Commits Structure
	Modifying and Synchronizing
	Interface Files/Code

	Evaluation
	Metrics
	Methodology
	Simulation
	Measurements
	Results

	Correctness
	Methodology
	TLA+
	Simulations

	Related Work
	TLA+
	Catan implementations
	Formalized Games
	Git-based Applications using Append-Only Logs

	Conclusion
	Insights of the Development Methodology
	Working with TLA+
	Git

	Future Work
	Perspectives

	Bibliography
	TLA+ Specification and TLC settings
	Game Rules

