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Abstract. In previous work the authors have described an approach for
building distributed self–healing systems – referred to as EmbryoWare
– that, in analogy to Embryonics in hardware, is inspired by cellular
development and differentiation processes. The approach uses “artificial
stem cells” that autonomously differentiate into the node types needed
to obtain the desired system–level behaviour. Each node has a genome
that contains the full service specification, as well as rules for the dif-
ferentiation process. This approach has inherent self-healing behaviours
that naturally give rise to fault tolerance. Previous evaluations of this
fault tolerance have however focused on individual node failures. A more
systemic fault modality arises when the nodes become mobile, leading to
regular changes in the network topology and hence the potential intro-
duction of local node type faults. In this paper we evaluate the extent to
which the existing fault tolerance copes with the class of faults arising
from node mobility and associated network topology changes. We present
simulation results that demonstrate a significant relationship between
network stability, node speed, and node sensing rates.

1 Introduction

In this paper, we consider the issue of fault-tolerance in self–healing distributed
networks that incorporate mobile devices and hence rapidly changing network
topologies. Inspired by related work on Embryonics [1,2], in our earlier work [3]
we proposed EmbryoWare, an “embryonic software” architecture for robust and
self-healing distributed systems. Like Embryonics, the EmbryoWare approach
is based on the assumption that each node in the system contains a genome
that includes a complete specification of the service to be performed, as well
as a set of differentiation rules meant to ensure that each node differentiates
into the node type required to provide required overall system–level behaviour.
A particular feature of both Embryonics and EmbryoWare is that there is no
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distinction between the fault4 handling behavior and the normal behavior of a
node. The ability of a node to restore from a faulty to a normal state is a side-
effect of the system’s normal process of differentiating into the locally correct
node type. Therefore, no special fault-handling routines are needed, which can
make the system potentially more robust to unforeseen disruptions.

In [3] we examined the general behaviour and performance of the Embry-
oWare approach and demonstrated its validity as well as its inherent robustness
and self–healing ability. That previous work however focused on individual node
failures with a uniform probability distribution of failures occurring in any node.
There does exists the likelihood of more complex patterns of node failure. One
of the more significant of these occurs when we have mobile nodes, leading to
regular changes in the network topology. When the topology changes the local
neighbourhood for nodes is affected. Given that nodes differentiate into differ-
ent types based, in part, on the sensed information from nodes in their local
neighbourhood, when this neighbourhood changes it can mean that the node
types are no longer correct. This can be interpreted as the introduction of faults
into the system. An example of this situation would be an ad hoc network of
mobile devices (such as cell phones) that form a distributed processing network.
As devices move, they establish and then lose temporary connections, and hence
the network topology is constantly changing. This has implications for ensuring
the validity of the system–level functionalities – particularly where the correct
behaviour of each node is dependent upon the behaviours in its neighbourhood.

In this paper we evaluate the fault–tolerance behaviour of EmbryoWare under
mobility, by measuring the extent to which the patterns in EmbryoWare can be
maintained in a valid state in spite of mobility. In particular, we are interested in
the relationships between the rate of fault generation (which will correspond to
the speed of the nodes and hence the rate of change in the network topology) and
those factors that affect the rate at which faults are addressed. In essence we are
considering how quickly the nodes in an embryonic system can re-differentiate
to ensure that the individual nodes are in a valid state.

In section 2 we discuss the background to our approach and related work.
Then in section 3 we provide a brief overview of the basic EmbryoWare archi-
tecture and the changes we have made to incorporate node mobility into our
simulations. We then describe our analysis approach and results in section 4.
Finally, in section 5 we describe our conclusions and future work.

2 Background

The motivation for our work comes from the increasing utilisation of distributed
services, i.e. services whose outcomes depend on the interaction of different com-
ponents possibly running on different processors. Distributed services typically

4 We refer to a fault as any circumstance in which a node is not operating in a
steady state but rather a state in which subsequent sensing is likely to lead to a
differentiation of the node type. This should be distinguished from a node failure,
where the node has failed to operate correctly due to some other operational reason.
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require complex design with regard to the distribution and coordination of the
system components. They are also prone to errors related to possible faults in
one (or more) of the nodes where the components execute. This is particularly
significant for applications that reside on open, uncontrolled, rapidly evolving
and large–scale environments, where the resources used for providing the service
may not be on dedicated servers (as the case in many grid or cloud computing
applications) but rather utilise spare resources, such as those present in user’s
desktops or even mobile devices. (Examples of such scenarios are the various
projects making use of the BOINC or similar platforms5.)

Other examples of distributed applications where each node takes on spe-
cific functionality include: peer-to-peer file sharing; distributed databases and
network file systems; distributed simulation engines and multiplayer games; per-
vasive computing [4] and amorphous computing [5]. With all of these applications
there is a clear need to employ mechanisms that enhance robustness and relia-
bility, ensuring the system’s ability to detect faults and recover automatically,
restoring system–level functionalities in the shortest possible time.

In this work, we deal with problems arising when the topology changes due
to nodes mobility. While as of today the vast majority of distributed services
are meant to run over static nodes, the increasing penetration of powerful mo-
bile devices (smartphones) has the potential of boosting the adoption of similar
approaches in the mobile computing field. Even when the devices themselves are
not mobile there still exists the potential for changes to the network topology
due to approaches such as intelligent routing. We report the following example
of applications, which help in better positioning our work.

Example 1 Wireless Grid Computing: One example of the kind of appli-
cations our framework applies to is the so–called wireless grid computing [6–8].
This applies the same principles underpinning grid computing research to mobile
phones. Sharing the load for performing heavyweight computational tasks across
a plurality of devices can provide advantages in terms of completion time and
load balancing. The possibility that the network topology can change dynami-
cally introduces an additional level of complexity with respect to grid computing
scenarios, due to the need to ensure that tasks will get completed even in the
presence of disconnections.

Example 2 Distributed Sensing Platforms: Current state-of-the-art smart-
phones are sensor–rich. They typically include at least a camera (video and im-
age sensor), a microphone (audio sensor) and short–range communication ca-
pabilities (such as Bluetooth and WiFi). Smartphones carried around by users
could therefore be used as a distributed wireless sensing platform [9, 10]. Such a
platform could be used to gather environmental information. An example is the
distributed search engine considered in [11].

Example 3 Mobile Data Sharing: as smartphones are commonly equipped
with some form of short–range wireless communications, they could be used to

5 http://boinc.berkeley.edu/
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exchange data and content in a peer–to–peer fashion [12–14]. Going beyond pure
flooding–based strategies (à la Gnutella) requires the introduction of a distributed
indexing/caching services, which should be able to ensure some system–level per-
formance (related, e.g., to the ability of locating and retrieving given content)
even in the presence of device mobility.

We are particularly interested in distributed services whereby the desired
system–level behaviour (or: system–level configuration, meaning the mapping of
devices to ’types’, where different node types carry out different behaviours) can
be expressed in terms of spatial constraints between the nodes and their types.
An example could be “A node of type A has to be no more than two hops away
from a node of type B” or “Any node of type C shall have no more than two
3–hop neighbours of type D”.

Robustness in distributed computing systems is a well–studied topic. Clas-
sical fault–tolerance techniques include the use of redundancy (letting multiple
nodes perform the same job) and/or the definition of a set of rules triggering
a system reconfiguration after a fault has been detected [15]. In many cases
however it is not feasible to pre–engineer all possible failure patterns and the
consequent self-healing actions to be taken for restoring global functionalities. In
previous work by two of the authors [16], we considered the potential for using
bottom-up approaches inspired by embryology to the automated creation and
evolution of software. In these approaches, complexity emerges from interactions
among simpler units. It was argued that this approach can also inherently in-
troduce self–healing as one of the constituent properties without the need to
introduce separate fault–handling behaviours. The ability of a node to restore
from a faulty to a normal state is a side-effect of the system’s normal process of
differentiating into the locally correct node type.

3 EmbryoWare Architecture

EmbryoWare [3] applies concepts inspired by cellular development to the de-
sign of self–healing distributed software systems, leveraging off previous research
conducted in the evolvable hardware domain. Such approaches, which gave rise
to the embryonics research field [1, 2], are based on the use of “artificial stem
cells” [17,18], in the form of totipotent entities that can differentiate – based on
sensing of the state of neighbouring cells – into any component needed to obtain
the desired system–level behaviour. In general, we define an embryonic system
as a system composed of networked entities that:

1. Are able to sense the state (or: type) expressed by neighbouring entities, i.e.,
those immediate neighbours with which direct communication is possible, or
those entities for which information is provided by immediate neighbours;

2. Are able to differentiate their behaviour into a given type, depending on the
type expressed by neighbouring entities and according to a set of well-defined
rules;
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Fig. 1: EmbryoWare Architecture, showing two neighbouring nodes.

3. Are able to replicate to neighbouring entities (i) the definition of all types
(ii) the set of differentiation rules.

Our specific architecture is shown in Figure 1 for the case of two neighbouring
nodes. Nodes are organised in a network, and each node contains the following
components:

– Genome: defines behaviour of the system as a whole, and determines the
type to be expressed based on local context (i.e., neighbour cell types).

– Sensing agent: component that periodically communicates with neighbours
regarding their current type. We consider in this work pull sensing, in which
each node periodically polls its neighbours to inquire about their currently
expressed type (as distinct from push sensing, in which each node ‘pushes’
information on its type to its neighbours).

– Replication agent: component that periodically polls the neighbours about
the presence of a genome; if a genome is not present then the current genome
is copied to the “empty” cell.

– Differentiation agent: component that periodically decides, based on the
cell’s current type and the knowledge about the types of the neighbouring
cells, which functions should be performed by the node.

In our earlier work we discussed some possible design choices and considered
the overall system performance – including the impact of network characteristics
such as latency and dropped data packets [3]. However, whilst the algorithms
themselves are independent on the network topology, we did not measure the
impact of mobile nodes, and hence of a changing network topology. When the
topology changes the local neighbourhood for nodes is affected, and this can
mean that the node types are no longer correct. This can be interpreted as the
introduction of faults into the system, and hence have significant implications
for the ongoing validity of the system.
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3.1 Case Study: Coordinated Data Sensing and Logging

The following example scenario will be used throughout this paper: a number
of mobile wireless sensor devices are deployed over an area for the purpose of
environmental monitoring. Each device collects sensor information from its sur-
roundings, and the data collected must be logged within the local neighbourhood
(to minimise longer range communication overheads). This means that each mon-
itoring node should be within only a few hops of a logging node. In this case
study we set this distance to two hops. When a monitoring node, through sens-
ing its neighbourhood, discovers that it is not within two hops of a logger, then
it will probabilistically differentiate into a logger. The differentiation behaviours
are given in Algorithm 1 and the pattern that results is illustrated in Figure 2.

It is worth remarking that this specific example could be regarded as a clus-
tering problem, in which cluster heads need to be at a maximum distance of four
hops. Similar problems have received attention in the ad hoc network commu-
nity, in particular related to the problem of computing the connected dominating
set (CDS) [19]. This problem could be addressed in a traditional way by, e.g.,
first computing the CDS of the original network and then computing the CDS on
the resultant overlay. However we believe that the EmbryoWare solution is much
simpler, more compact, and able to handle faults in an intrinsic way. A com-
parison with existing cluster construction algorithms is a good topic for future
work.

– Stem cell:

with probability PTtoM : Type←Monitor

– Monitor cell:

no 2-hop logger ⇒ with probability PMtoL: Type← Logger
with probability PMtoT : Type← Stem

– Logger cell:

2-hop logger ⇒ with probability PMLtoT : Type← Stem
with probability PLtoT : Type← Stem

Algorithm 1: Differentiation behaviour for Genome for simple environment log-
ging application.

In the subsequent sections, we will evaluate the impact on the system validity
(i.e. the ability to return to a correct state from a state that include faults), in
the case of a time–varying network topology due to nodes mobility, of different
choices for the sensing period, i.e., the time elapsed between consecutive polls
of a nodes neighbour. Furthermore, we will consider two options related to the
timing of when a node becomes aware of a change in the topology. The baseline
behaviour would be that nodes operate completely independently except for
the periodic sensing. In our earlier work, with a fixed topology, this sensing
only gave information on the current type of neighbouring nodes. With mobile
nodes becoming a possibility, the sensing will give not only information on nodes
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Fig. 2: Example differentiated node pattern: The red (darker) circles represent
monitoring nodes and the green (lighter) circles are logging nodes. Nodes with
a black centre are currently in an invalid state.

types but also node connections – i.e. the local neighbourhood topology. This
means that if the topology changes due to node movement (or failure) then each
node will only become aware of that, and respond to it through appropriate
differentiation, after its next sensing operation. We refer to this sensing behavior
as connection unaware. The alternative to this is if the node maintains a
continuous awareness of its connections to other nodes (through relevant lower-
level communications mechanisms, such as the loss or gain of a carrier signal
and/or reception of appropriate beacon messages) then it could become aware
of a changed topology much sooner than the next sensing cycle. In this situation
it would be able to react much more quickly. We call this mode of operation
connection aware. The implications of these two different sensing behaviours
will be analysed in the following section.

4 Performance Evaluation Under Node Mobility

We now evaluate the impact of mobility on the fault-tolerance properties of the
scenario described in Section 3.1. Initially, the overall system may be in a valid
state (i.e. all monitoring nodes within 2 hops of a logger). However, as nodes
move, and the topology changes, the validity of the system can be affected.
Consider the cluster of monitoring (red) nodes around (1, 7) in Figure 2. If
these nodes were to move upwards then they would become isolated from the
associated logging node at (1, 5), and hence they would be in an fault state. This
fault would persist until the nodes were able to sense the lack of a neighbourhood
logger, and one of the nodes in this cluster differentiated into a logger.
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A key performance characteristic to evaluate the system’s self-healing ability
is the percentage of time that the system is in an invalid state (i.e. a fault in
the system is persisting). Two factors will affect this: the frequency with which
faults arise, and the speed with which they are then corrected. The former should
be predominantly related to the rate of change in the topology, and hence the
speed at which the nodes are moving. The latter will be related to the speed
with which the fault is detected, and hence the sensing behaviour.

Understanding the relationship between system validity, node speed, and
sensing behaviour is important insofar as it allows us to appropriately tune the
behaviours of the system. Sensing the state of neighbours (or, as discussed above,
the existence of network connections) incurs both processing and bandwidth
overheads. If we have a sensing behaviour that performs more rapid sensing
than is necessary, then we are wasting resources.

To evaluate the extent to which each of these factors plays a role we ex-
tended the Matlab simulations from our previous work in order to incorporate
node mobility. The basic algorithms for implementing the embryonic behaviours
are outlined in [3]. These were modified in several ways. Firstly, the nodes have
been made mobile. They have an initial location and a random (uniform distri-
bution) velocity that only changes when the the node reaches the edge of the
containing area (a lossless reflection). All nodes continuously move, with connec-
tions existing between nodes only when they are within a specified range of each
other. The node network shown in Figure 2 was generated using N = 40 nodes
initially randomly distributed in a 10m× 10m area, with nodes being connected
when they within 2m of each other.

We then undertook two main fault-tolerance evaluations – using each of the
two primary sensing behaviours described above. To evaluate the fault-tolerance,
we varied the maximum node velocity over the range 0...2m/s, and the sensing
period over the range 0.05...0.8secs. For each pair of velocity and sensing period
values, we ran 10 simulation passes, with each pass running for an initial period
to allow node replication to occur, and then a 60sec evaluation period where
we measured the proportion of time during which no fault was present in the
network.

4.1 Connection aware versus connection unaware sensing

The first set of analyses were carried out for the two sensing behaviours described
previously. Figure 3 graphs the overall system fault rate (i.e. the percentage of
time for which the system contains at least one faulty node, i.e. a node is not
within 2 hops of a logging node and hence needs to differentiate to return to
a valid node type) against node speed and sensing period for the two cases
discussed above (i.e. where the nodes do, and do not, retain awareness of the
existence and loss of network connections).

As can be seen from these results, in both cases there is a noticeable, though
expected, increase in the percentage time that the system contains at least faulty
node as the node mobility increases. Of interest is that this increase is gradual
and relatively linear, and there does not appear to be a point at which the ability
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Fig. 3: Fault recovery: Results showing the percentage of time that the system
contains at least one faulty node for varying node maximum speed and varying
sensing times: (a) where the nodes retain awareness of the existence or fail-
ure of network connections; and (b) where the nodes do not monitor the state
of the network connections. (Generated by Matlab files GenomeTester v3j.m and Genome-
Tester v3k.m)

of the system to recover collapses. This is an important observation insofar as
the implications for varying node speeds that can be tolerated.

Somewhat more surprising is the result with regard to variations in the sens-
ing period. In the “connection aware” case, variations in the sensing period
appear to have only marginal effect on the fault recovery. This can be explained
as follows: when a connection between two nodes is broken because of node
movement, the direct neighbouring nodes will become aware of this immediately
and any information that either node obtained from the other node is removed
from its list of sensed data. This means that the node differentiation can then
occur immediately, rather than needing to wait for the next sensing period. The
details of the implementation of this are given in Algorithm 2. The only occa-
sions when an immediate re-differentiation does not occur is where the directly
impacted nodes are still in a valid state, and it is nodes further away in the
neighbourhood that are the only ones that enter a faulty state. In this case the
re-differentiation that corrects the fault must wait for a sensing cycle to occur.
Overall, this particular behaviour leads to a more rapid response to changes in
the network topology and a relative Independence of the sensing period, but
does require that all nodes retain constant awareness of their connectivity to
nearby nodes (often this would be available through the presence of a carrier
signal) with the associated resource overheads that this implies.

In the “connection free” case, there is a slightly stronger relationship with the
sensing period. As can be seen, as the sensing period gets longer, the percentage
of time that the system contains faulty nodes increases. We can understand
this relationship more clearly by looking not only at the time that the whole
system is valid (i.e. no nodes at all that are in a faulty state), but at the average
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for all i ∈ Nodes do
if Node movement leaves region then

reverse Node velocity
update Node location

for all i, j ∈ Nodes do
calculate distance(i, j)
if distance(i, j)< commRange then

connected(i, j)=true
for all i, j ∈ Nodes do

if !connected(i, j) then
delete Node i sensed data obtained from Node j

Algorithm 2: Node movement

Fig. 4: Connection unaware sensing: Results showing the average percentage of
time that a node is faulty for varying node maximum speed and varying sensing
times, where the nodes do not monitor the state of the network connections.
(Generated by Matlab file GenomeTester v3k.m)

validity of each individual node. Figure 4 shows these results. As can be seen,
there is a much more significant relationship to the sensing period. Several other
observations arise from this data. Firstly, it appears that there is a baseline fault
rate that even extremely rapid sensing cannot improve – for example, with the
system configuration used in these simulations6, at a node maximum speed of
0.25m/s, it does not appear possible to reduce the average percentage of time
that nodes are in a fault state below 1% irrespective of how quickly the sensing
occurs. We believe that this is an artifact of the algorithmic sequencing in our
simulation – though even if this is the case, similar behaviours would be likely
to emerge in real-time code executing on live mobile devices.

A second observation arising from the data shown in Figure 4 is the increas-
ing volatility of the average node fault rate as the sensing period increases. The
processes being evaluated are inherently stochastic, both in terms of the speed
and associated movement of the nodes (and hence the changes to network topol-
ogy), and in terms of the node differentiation decisions. At low sensing periods
the baseline fault rate (as discussed above) tends to dominate the behaviour.

6 Relevant factors in the configuration are likely to be area size, number of nodes and
hence node density, and the probabilities that affect the differentiation behaviours.
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At slower sensing rates however the delay in returning to a valid state from a
fault state appears to be significantly more variable. This may be an issue that
needs to be taken into account with applications that cannot afford extended
periods of unavailability of individual nodes – though it is worth acknowledging
that embryonic systems are designed explicitly so that they do not rely on the
behaviour, or indeed even availability, of individual nodes.

5 Conclusions and Further Work

In this paper we report performance measurements with regard to the fault
tolerance of a distributed processing architecture, based on embryonic principles,
where the nodes in the system are mobile. The node mobility inherently leads
to constant changes in the network topology for the system, and hence changes
in the local neighbourhood for individual nodes. This in turn can lead to those
nodes being temporarily in a fault state. This fault state in inherently rectified
by the self-healing differentiation processes in the nodes – but this process does
take time.

We have evaluated the relationship between node speed, node sensing period,
and fault recovery. Interestingly, we found that rather than reaching a “knee” in
the performance curve where above a certain node speed the system performance
collapsed and became unable to recover from the increasing number of faults,
the relationship between node speed and fault recovery was relatively linear.
This is likely to be an important finding in terms of dynamic adaptation of the
sensing periods in the nodes in ensuring that the performance remained above
a specified level.

We also have shown that the fault recovery performance becomes much less
dependant upon the sensing period if nodes are able to continuously monitor the
existence (or loss) of the network connections. This monitoring is unlikely to be
feasible in systems involving, for example, sensor networks where the communi-
cation is intentionally very sporadic in order to minimise resource utilisation (i.e.
most commonly power and/or bandwidth). However in other domains where the
connection is maintained (or at least there is a constant carrier) this finding will
be significant in that it indicates a much lower sensing rate, and hence lower
processing and bandwidth overheads, will be tolerable.

One aspect that we have not considered, and which is a fruitful source for
future investigation, is the possibility of replacing (or even supplementing) state
sensing with pro-active state broadcasting. In this scenario when a node changes
its state it would broadcast its changed state to its neighbour. This may cir-
cumvent the need for monitoring of the connection (as described in the previous
paragraph) as a simpler way of making the performance less dependant on the
sensing period. However this could also introduce excessive messages when mo-
bility is high, and a compromise would have to be found.

Our measurements are performed over a particular case study: the logging
scenario. Ideally, one would like to know the general fault-tolerance properties of
the EmbryoWare approach. For this purpose, as a future work, it would be in-
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teresting to evaluate several different cases, and see whether they share common
fault handling patterns.
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