Experiments on the Automatic Evolution
of Protocols using Genetic Programming

Lidia Yamamoto and Christian Tschudin

Technical Report CS-2005-002*
University of Basel
April 21, 2005

Abstract

One of the biggest challenges in obtaining truly autonoradf-
managed networks is to automate the process of softwaratewoland
in particular, the evolution of protocol implementationsdeconfigura-
tions. Such networks ultimately requiself-modifying, evolvingroto-
col software. Otherwise humans must intervene in evenasgan that
has not been anticipated at design time. For this to becoasgbie au-
tonomic systems must ensure non-disruptive, resilienfirensoftware
evolution.

We are starting to explore approaches to network evolutiah dp-
erate directly at the code level. We investigate relate@teering tech-
niques in two directions: One is the fully automatic selactf protocol
service elements where, depending on device charactsréstid current
operation environment, each communication entity haslersamong
a potentially wide variety of protocol implementations yiging sim-
ilar services. The other direction relates to the automsyticthesis of
new protocol elements which are the result of optimizingsgmg im-
plementations for a specific context. In both cases we loaleattic
programming as a tool to generate new code and software coafig
tions automatically. We propose a framework for such a iesdilpro-
tocol evolution and report on first exploratory results oa #daptation
and re-adaptation to environmental conditions, and thaieétion of
superfluous code.
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1 Introduction

Managing change in a network and its services is currentibarlintensive task which is not au-
tomated. Any new algorithm must be engineered, then progredn and deployed in the network.
Today this process is slow and requires the effort of manypleemetwork managers, engineers,
programmers), which is outside the scope of autonomic nésvdNetworking software must be
able to adapt and reconfigure —i.e., to evolve — by itself énrtfost autonomous way possible.

Ultimately, protocols and algorithms for autonomic netisshould evolve during their own
execution, with minimum service disruption. Such long tetm-time automated code evolution
is useful in two main situations: a need to optimize a givetwnek service at run time, that
cannot be satisfied by just optimizing service parametersg$ponse to steady changes in the
environment or internal errors that require modificationthim already deployed code.

At the same time, autonomic networks should be able to rdsgiptions (hence change), in-
cluding the actions of malicious or erroneous entities Wiig to disturb the network’s functional
blocks in any possible way. Ideally, these blocks would trdégcdetecting and defeating such
attacks, and would then recover and heal themselves tonc@ngiroviding the required services.
In case of failures, alternative service blocks would replthe non-functioning ones in a reactive
and non-supervised way.

With these problems in mind (simultaneous pressure to evahd the requirement to resist
changes), we describe our framework for protocol evolubased on genetic programming. We
concentrate on two research directions: the first one is tonaatically select combinations of
protocol modules adapted to given network conditions; #eosd is the automatic synthesis of
new protocols optimized for a specific context. In this répee show the feasibility of automatic
network software selection based on service agnosticttéugetions. This result is based on the
introduction of competition at the level of functional bkscand the use of genetic algorithms to
steer the selection process. We report our experimentaltsassing simple case studies, still in a
simulated, off-line environment, but with considerati@rsl parameters intended to progressively
detach the framework from the off-line simulation out inbe treal world. We show the feasibility
of code trimming, context aware selection of protocol vaisaand their re-adaption to changing
environments using the proposed genetic programming frare

This report is structured as follows: Section 2 summaritesdtate of the art in program
and protocol evolution techniques. Section 3 states outiposand describes our framework for
protocol evolution. Section 4 reports the experimentaliitebtained so far. Section 5 concludes
the report with our outlook for this new area.

2 Stateof the Art and Related Work

Automatic programmin@r program synthesisefers to any method for automated generation of
a computer program that is able to solve a given problem sgpikin a high-level form. Exam-
ples include variations of meta-programming, deductivegpm synthesis [7], and evolutionary
methods such as genetic programming.

Deductive Program Synthedig] takes a program specification in the form of a theorem that
expresses the relationship between a given input and adesitput. It then proves the theorem
automatically, discovering the algorithm to go from inpatdutput in the process. Because the
algorithm stems directly from the proof, it is proved to méwt specification. Although promising,
the current state of the art in deductive program synthdgisedies on partial human assistance
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(interactive systems) and/or heuristics that do not guaesasuccess. Besides that, the technique
is applicable only in domains where the input and output ofa@mm is well-known and can be
unambiguously defined.

Genetic Programming (GHp] is a machine learning method to evolve computer programs
automatically from random initial code, using genetic @pi@ns such as crossover and mutation,
and evolution by natural selection (“survival of the fitt¢$d select the solutions that best satisfy
specified criteria. GP is typically employed when the solutio a problem is not known or very
difficult to program by hand.

Most of the work in genetic programming is based on off-liode generation. Once in opera-
tion, the generated code does not continue to modify iteedfiapt to changing situations. One of
the reasons for that is that genetic operations cannot giesrarror-free code for each generated
program. The fitness of each program is typically testedin&-and only released after a suffi-
cient number of generations has evolved code that can beisuffiy trusted. Another drawback
of off-line generation is that code evolves in a simulatedirenment which inevitably makes
simplification assumptions, so problems may arise wherstearing the code to the real world.

Although GP has been mostly applied to off-line solution ailgems, it has also been used
to evolve new programs at run-time, in domains such as ebl@viaardware [15] and robotics
[1, 16]. However, to the best of our knowledge, on-line etiolu of networking protocol code has
not been tried yet.

In [8] genetic algorithms are applied in a decentralized w@yevolve agents that provide
network services. Although their work is still implementeid simulations, their design aims at
on-line evolution. Their results show that evolution carpiove agent performance. However,
in their scheme, the code itself does not change. They foouleevolution of parameters that
trigger certain predefined behaviors.

Protocol synthesifl1] aims to generate a valid protocol specification thatfats a supplied
service specification. A survey of synthesis methods isigeal/in [11]. The methods must
guarantee the safety and liveness properties of the syn#luegrotocols, meaning that these must
be guaranteed free from syntactic, logical and semantigdesrors. Since these methods must
guarantee error-free code, they are still not feasible folime evolution.

Examples of machine learning methods applied to protoaah®sis include [2, 6, 10, 13, 14].
In [6, 10] an iterative deepening search approach is useddgfiotocol specifications that satisfy
a given set of security properties. In [10], a generator watitough the specification space and
feeds the found candidates to a protocol screener. In [$itbrk is extended with a code generator
that transforms the found protocol specification into a Jayglementation.

In [13] genetic search is used to synthesize protocol implaations from scratch. The syn-
thesized protocols are expressed as communicating fiaterstachines. This research is extended
in [14] and shows that relatively complex protocols can b&tlsgsized in this way, and in certain
cases these protocols can even outperform a referenceplratesigned and validated by human
beings. However in most cases the fitness of synthesizedqaistis significantly lower than the
reference protocol.

In [2] an evolutionary method to synthesize communicatiootqrols is proposed. Similar to
[13, 14], it also synthesizes finite state machines. Moreibwecludes a method to derive a set of
input/output training sequences that assures semantieatoess of the generated protocol. They
show that optimum protocols can be generated for the singde of a connection establishment
task.

In most of the existing work, protocol synthesis is regarded protocol engineering method
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to be applied at the design phase. In contrast, we are igedisii) protocol synthesis as a tool for
automated protocol evolution, to be incorporated as patheftasks that an autonomic network
must handle during run-time, on a routine basis.

3 Evolving Communication Protocols

The main premise underlying our work is that software in atbmomic network must bself-
modifying If the software was not self-modifying, it would mean thatrans had to cater for the
software’s adaption every time that a case is encounteréchwias not anticipated at design time.
Our aim is to find a framework where software self-modificatie carried out in a goal oriented
and non-disruptive way. Hence, we seek a mechanism whigmizséic to which function it adapts
as long as the mechanism is capable of steering the wholerieimto optimal configurations.

We envisage different levels at which self-modification oftware takes place and different
time scales at which such modifications can happen. In oadeppe with the constraints of a
realistic run-time environment, we aim first at optimizingsting working protocol code, as op-
posed to full protocol synthesis from scratch. A first steémeal at a shorter time scale, is the
configuration of function blocks, where the challenge cstissin selecting the right combinations
from ready-made modules. Today, this is mostly controllgatandardization process and inter-
operability tests. Although several systems able to dynaltyi reconfigure software have been
proposed, for instance [12, 19], most of these systemsedijlion humans to program exactly what
kind of reconfiguration should be performed under whichwinstances.

In the future we imagine that a network “settles” by itself different protocol sets without
having humans to intervene. For example, depending on théable hardware, different “stack
profiles” could be selected for sensors, PCs or core routdris. selection process is also applica-
ble at finer time scales where for example an ad hoc networlsaéich among different routing
algorithms, depending on the current topology. Anothemgxa would be the downloading of
networking code, as exemplified by instantiating TCP flawosgle a TCP connection [9], where
end nodes have to settle on the optimal combination of option

At a longer time scale, these self-modification scenariasdcim principle be extended down
to the level of single instructions where the autonomic rekavould have the power to create
new implementation variants, instead of just manipulatingrse grained functional blocks. At
first, these new variants would emerge out of existing imgetations. Eventually, full protocol
synthesis from scratch, at the level of single instructiamild become possible, leading to fully
autonomic networks.

3.1 Resilienceand Competition

For such an autonomic selection process to work we need asrairandi that permits adaption
(medium time scale) as well as evolution (long term). Adaptielates to the configuration of
existing functionality while evolution refers to the moddikion of old and generation of new
functions. We believe that two attributes of such a systegrkay for its viability: resilience and
competition.

The network must start witinherent resilienceotherwise there is a risk that (malicious or
erroneous) function blocks can be inserted that disruphétevork’s operation. In other words:
adaption and evolution have to be activities that are rupnmparallel with the network and which,
in the worst case, may temporarily disturb the network buahcd inhibit its operation.
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The second attribute mmpetition the autonomic network operates in a constant optimization
mode where it picks those function blocks and code variahisiware best suited.

Both attributes are currently implemented by having humaegorming the adaption and
evolution, and by writing and selecting those software lesidhich provide the best value. Often,
this human activity is not solely based on detailed analgsitsalso includes a simple trial-and—
error strategy. Our goal is to rely on the later selectiorcpss only and to provide an environment
where new functionality or function profiles can be evaldaaed selected without disrupting the
network.

3.2 Software Hardening and Genetic Programming

We have started to explore the feasibility of self-modifyicommunication software by demon-
strating protocol resilience, where protocol implemeiota can survive the removal of an arbi-
trary code line [18]. In the current report we explore genptiogramming as a tool for modifying,
recombining and erasing protocol modules. Other machiamieg methods or heuristics could
also be envisaged, for example, as has been demonstrattidefsiynthesis of security proto-
cols [6, 10]. However, plain genetic programming lenddfitee our project because it is agnostic
to the functions adapted, and naturally extends to the firmngd code evolution that enables
long-term synthesis and evolution.

Another choice we have made relates to the execution emarean for the protocol software,
which should be amenable to genetic programming. Sequientie, for example, is less suitable
than a “chemical soup of rules” execution model [3, 4] beeahg executability of a linear code
sequence depends on almost each of its instructions. Faxpariments we are currently using
our “Fraglets” chemical model [17], which also permits t@sess code mobility e.g., for evolving
code deployment logic. Section 3.5 gives a quick overviethefFraglet model and describes its
useful properties which make it our model of choice for pooicsynthesis and evolution.

3.3 A Framework for Automated Code Steering

Ideally, a software environment for an autonomic networbwst feature continuous adaption and
evolution: Alternative code variants should co-exist imghial with the currently best selection
of protocol implementations. In terms of code steeringrehgould be a mechanism in place for
on-line evaluation and selection of the alternatives. ©hidine evolution has to be a continuously
ongoing process that is decentralized and asynchronoukingmn each node and at many levels
inside the graph of functional modules.

Figure 1 shows a conceptual model of how resilience and cttigmework together to en-
able the automatic evolution of protocol implementationsl aonfigurations. Applications (or
any client protocol) delegate service provisioning to alierg protocol implementation, and from
time to time or in parallel give a chance to test candidatease on their performance, new
service implementation variants can increase their chamdee selected a next time. Service
variations do include different ways of combining sub-g&8. Because the evaluation and se-
lection mechanism takes into account the overall perforeani a service implementation, it will
give preference to the service with the most optimal inteowenposition and configuration of
sub-services.

Our current implementation of the model of Figure 1 is stiflited to off-line evolution, i.e. to
the case of synchronous evaluation and selection, so treer@aoncurrent services yet. However
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Figure 1: Conceptual framework for automatic protocol atioh

we plan to progressively detach it from the off-line spheréaior of the long-term goal of on-line
evolution.

3.4 Genetic Programming Set-up for Protocol Evolution

We apply Genetic Programming to evolve communication maor protocol structures, which
are regarded as individuals in a GP population. A major défiee between our system and clas-
sical genetic programming is that our GP run starts with aupdn of working or partially
working solutions, which may or may not be adapted to the tasiuestion. Another difference
is that our GP run is a continuous optimization process: yiséesn must continuously adapt and
readapt. This is in contrast with classical off-line GP wh#re system runs until a termination
condition is satisfied; it then outputs the solution and stop

The genotype is the metaphor for the protocol implementatisde, and is manipulated from
one generation to the next through well-known genetic dpesasuch as crossover, mutation and
cloning. Cloning simply produces an identical copy of anivitiial. Crossover combines the
genetic material of two individuals by swapping a segmertheffirst one with a segment of the
second one. Mutation randomly modifies a small portion ofratividual. The way in which
genetic operators are combined to produce new individugtisrohines the speed of the search and
extent of the search space explored as the GP run progreBeesggeneral rule is to submit the
best individuals of the population to crossover, and applyation with a small probability.

The crossover operator in our set-up is a simplified impleatén of the genetic concept
of homologous recombination. Homologous recombinati@test that the exchange of genetic
material can only occur between functionally compatibleAD$&gments, and is only triggered
when the two DNA strands are completely aligned. This forrmezombination preserves gene
functionality, promotes genetic stability, and increa#ies probability of producing viable off-
spring. We implement this concept by dividing the protocehgtype into modules that make up
the “genes” of the individual, and by allowing crossover ¢aur only at gene (module) boundaries
and between functionally equivalent modules. Modules @eatified by a name, and crossover
operations are only allowed to exchange modules with idahtiames.

The fitness measure is the performance of the protocol agigeccby the applications. They
reward correct behavior and punish incorrect one when tkerlecFor instance, the score of an
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individual is incremented when it performs the correct apien (e.g. successfully delivering a
packet), and it is decremented when an error is detected &@cknowledgment is issued for
a data item that has never been actually received). Rescaormmption, in terms of memory
occupied by the genotype, is proportionally penalized.

We now describe the GP algorithm. For each generation, aaouent selection is held, as
follows:

1. Insert each individual of the population into its exeonticontext (i.e. connect it to its
application and network environment), and run each of thenttfe same fixed amount of
time or execution cycles.

2. Extract the fitness scores for each individual in the pajo.
3. Select they, best fit individuals and add them to the population of the nenegation.

4. From the set of. fittest individuals, withn, > n, selectn, < n./2 pairs of individuals at
random.

5. Perform crossover for each pair, producihgn, new output code streams, which are then
added to the pool of new generation individuals.

6. If mutation is enabled, select a small number of individuals at random within the set
of n. fittest, and perform a mutation on each of them. Add the regulhdividuals to the
population of the next generation.

Traditional genetic programming models perform an ofeligenetic search in which produc-
tion of offspring is synchronous and fitness evaluation istredized. Our current experiments
are still limited to an off-line set-up, since we first needd@monstrate the basic viability of an
automatic selection process.

3.5 Fraglets

The Fraglet paradigm [17] has been proposed as part of ouwrlséar feasible ways to achieve
automated synthesis of protocol implementations. It isretance of Gamma systems [3,4], a
chemical model where “molecules” interact with each otheumdergo some internal transfor-
mation. A fraglet is a string of symbolss; : so : ... : s, ] representing data and/or protocol
logic. Itis a fragment of a distributed computation, thatyrba carried in packets or stored inside
a network node. The fraglet processing engine continuoeishgutes tag matching operations on
the fraglets in the store, in order to determine the actibas $hould be applied to them. The fra-
glet instruction set contains two types of actions: trammefttion of a single fraglet, and “chemical
reaction” between two fraglets. The instruction set is dbsd in [17, 18], along with examples
of processing and protocol functions. Table 1 summarizesdhction and transformation rules
used in the examples of Section 4.

The fraglets model has many relevant properties that mubidsgighted in connection with
automated protocol synthesis and evolution. First of aly; string of symbols is a valid fraglet,
therefore fraglets can be split at arbitrary places and suesgith other fraglets to produce dif-
ferent code. A second property is the ability to express @kdata in a uniform way. Code is
manipulated just like any other form of data, and it is easgoress rules that generate and delete
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Table 1: Fraglet reaction and transformation rules

| Reaction| Input | Output | Semantics |
match [ match : s : taily ], [ taily : taily ] concatenates two fragletg
[ s:taily] with matching tags
matchp | [ matchp : s : taily ], [ taily : taily ] persistent match
[ s: taily ] [ matchp : s : taily ] | (preservesnatchp rule)
| Transf. |
dup [dup:t:w:tail] [t:u:w:tail] duplicates a symbol
exch [exch :t:u:v:tail] [t:v:u:tail] swaps two symbols
split [split :t:... :x:tail] | [t:...],[ tail] breaks fraglet at position
send Al send : B : tail ] B[ tail ] (unreliably) | sends fraglet fromd to B
wait [ wait : tail ] [ tail ] (after interval) | waits a predefined interval
nul [ nul : tail ] [] fraglet is removed

code from the running pool. A third aspect is the ability tpeess code mobility in a natural way:
any fraglet can be regarded as either a set of packet heagethtat can be processed by a header
processing engine, or as a program fragment that is exeati@diven node. This facilitates the
dynamic deployment of new code logic.

A fourth property of the fraglet environment stems from i®ts in Gamma systems: it en-
ables programs to be expressed in a highly parallel way thegrny close to their specification,
without artificial sequentiality constraints. This is ne@t for automated program synthesis and
evolution, in two ways: first, this parallelism can be useg@toduce resilient programs as shown
in [18], which tolerate the loss of parts of their code stredoe to fallback alternatives running in
parallel. This can be used to diminish the impact of malfiemitg code. Secondly, the fact that
programs are relatively compact and close to their spetificaould open up potential avenues
for deterministic synthesis techniques based on spedificat

4 Experiments

We have performed a few experiments using the fraglet enmient to verify whether software
configurations can adapt to their environment, by the mempicgtion of generic and service
agnostic GP methods. We start with a description of the pad$oinvolved in the experiment
(Section 4.1), and then describe the results for three @rpats: testing the capacity to eliminate
superfluous code (Section 4.2), adaptation to the envirahrf&ection 4.3), and re-adaptation
(Section 4.4).

4.1 Protocol Implementations

A simple case is considered where a reliable delivery sermuist be provided over different
channel characteristics. The task is to transmit all packeim the client application, with ac-
knowledgment of correct delivery. Two types of underlyingnismission channels are considered:

 Perfectly reliable channelln this case, the protocol does not need to retransmit packe
A simple implementation of this in fraglets is the confirmeslicery protocol (CDP) pre-
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sented in [17]. It simply transmits a given payload from notd&® nodeB and returns an
acknowledgment fronB3 to A.

» Unreliable channel In this case, the protocol must retransmit lost packetseliable de-
livery protocol (RDP) has been implemented for this purpoketakes an input payload
from the application, sends it to the destination, storesy docally, and sets a waiting
timer. When the timer expires, and the corresponding loopl®f the information is still
stored, the packet is retransmitted. When an acknowledgimeaceived, the local copy is
destroyed; this cancels any pending retransmissions slgtetbr the item. For simplifica-
tion, no losses from sink to source are modeled.

Each protocol is encoded as a fraglet genotype made up ofittmmg modules or genes. The
genotype is the concatenation of all the modules (and tohestituent fraglets) that implement the
protocol. Each module starts with &m” marker followed by the module name.

m send m receive
Almatchp : data : send : B : deliver] plmatchp : ack : send : A : deliver : ack]

Figure 2: CDP implementation in fraglets

Fig. 2 shows the fraglet code for CDP, both sender and recegiges. When presented with an
application payload of the form[data : payload], the firstmatchp rule in thesendmodule will
be activated, and the resulting reaction will produce a fildend : B : deliver : payload], which
will send the fraglefdeliver : payload] to B, where thedeliver tag will causepayload to be
delivered to the application. The application will respdiydnjecting ag[ack]| fraglet, which will
react with thematchp rule of thereceivemodule, causing theck to be delivered to the source
application on noded. Note that thedeliver tag can be implemented as a predefined rule that
takes the tail symbol string out of the fraglet environmeaivards an external application), or can
be caught by &natchp : deliver : ...] rule as part of a fraglet application.

The RDP implementation is shown in Fig. 3. It has exactly thees interface with the
application as CDP, so that both protocols can be interctthmg a transparent way. Aata :
payload] fraglet injected by the application activates #®ndmodule, producing two fraglets:
[retransmit : payload] and [mack : payload]. The first one triggers a retransmission loop
(retransmitmodule). The second one triggers a series of reactions vghmadiuce a new rule able
to treat an incomin@ck and cancel any corresponding retransmission.

Both CDP and RDP are very simple protocols able to handle onégypacket at a time. But
they suffice to illustrate the concepts of evolutionary peol module selection, code adaptation
and re-adaptation.

Several variants of CDP and RDP have been implemented to upaeeasonably sized ini-
tial population for the GP run. Figures 2 and 3 show exampleswect implementations. Other
correct variants are also present in the experiments, dsaweghriants that introduce arbitrary de-
lays, consume more memory, contain useless code segmelhise phe code pool with byproduct
debris of reactions, and so on.

Crossover by homologous recombination is implemented kgpging modules of the same
name in different protocol implementations. Since therfatee of each module is the same re-
gardless of its internal implementation, modules are cdiblgaand crossover produces viable
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m send m retransmit

[matchp : data : dup : data3] [matchp : retransmit : dup : t91]

[matchp : data3 : exch : data2 : mack] [matchp : t91 : exch : t92 : t94]

[matchp : data2 : exch : datal : %] [matchp : t92 : exch : 93 : %]

[matchp : datal : split : retransmit] [matchp : t93 : split : transmit]

[matchp : mack : exch : mack5 : nul] [matchp : t94 : dup : t95]

[matchp : mackb : exch : mack4 : %] [matchp : t95 : exch : t96 : retransmit]

[matchp : mack4 : dup : mack3] [matchp : t96 : dup : t97]

[matchp : mack3 : exch : mack2 : wait] [matchp : t97 : exch : t98 : %]

[matchp : mack2 : exch : mackl : split] [matchp : t98 : split : wait : match]

[matchp : mackl : match : ack : split [matchp : transmit : send : B]
deliver : ack : * : match]

Figure 3: RDP implementation in fraglets (sender side)

individuals. Mutation may affect individuals with a low grability, changing a symbol at random
in the fraglet pool.

4.2 Stripping Protocol | mplementations

In this first baseline experiment we test whether the sysseablie strip exceeding code, by elimi-
nating garbage that is arbitrarily added to the programstakie the CDP implementation and add
several modules, some of which are empty, and some whicbrpemandom but non-disruptive
actions consuming CPU cycles.

We generate 10 such “polluted” individuals, and performeagpd GP runs of 50 generations
each, andy, = 4, n. = 8, n, = 3, n,, = 0. A typical result from these runs is that roughly 75%
of the garbage modules are eliminated. In a sample run, @vedlaclean individual (with a single
garbage module remaining) emerges around the second geneend progressively propagates
to the rest of the population. By the 7th generation, allvitllials have a single garbage module.
In this example the system does not improve beyond that,usecall the individuals have the
same garbage module, therefore homologous crossover &bleoto eliminate it.

4.3 Adaptation

The goal of this experiment is to verify whether a mixed pagioh of protocols is able to adapt
to a given environment. Our mixed population is composedgifteaCDP and eight RDP variants.
These are alternative implementations of the same furatign Some of them are perfect with
no known bugs, others are deliberately made inefficient fleréint degrees, for instance, by not
retransmitting packets correctly, or retransmitting tooam, or spending a lot of time on bogus
tasks.

We insert this population into two GP runs. In the first rure ffopulation faces a reliable
channel with no packet loss. In the second run a rather Idsagrel (25% packet loss) is intro-
duced. For each run we choosg = 6, n. = 14, n, = 4, n,, = 2. This results in a population
size of N = ny + 2 - n, + n,, = 16 individuals per generation, which is the same size as the
original (hand-made) population.

Figure 4 shows the adaptation of the initially mixed pogdolato these two loss environments.
The upper part shows the fitness scores for the differentltiak rates, and the lower part shows
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Figure 4: Absolute scores and percentage of high/low sdoredifferent packet loss rates

the percentage of high and low-score individuals. A higbreéndividual is an individual that has
achieved a score equivalent to at least 80% of the best sworeits generation. A low-score one
scores less than 40% of the best of its generation.

For the non-lossy channel (Figure 4 left), the populati@rtstwith a low average score, but
after a few generations most of the individuals have a scosedo the best, and the percentage
of individuals with very low score is small. In this case, test individual is also the optimum
(hand-designed), and the GP selection process succeedsdtkin the population through the
successive generations. After four or five generations é¢tramsmission code is eliminated, and
the surviving individuals are all instances of CDP.

In the lossy channel the retransmission code spreads vésklygthrough the entire popula-
tion: all the individuals contain it after the first couple génerations. In Figure 4 (top right) we
can notice that the best score achieved by RDP is much lowearith equivalent in CDP. This is
because the retransmit logic and associated timers conexergition cycles. Since all the indi-
viduals are allowed to consume the same amount of cyclesjttie code achieves much higher
score. The adaptation to the environment can be observadung= (bottom right): after roughly
15 generations, more than 80% of the population is made upgbfdtore individuals. At the
same time, the number of low-score individuals is reducea tanimum.

In both lossy and non-lossy cases, mutations are mostlpnsgpe for these low-performance
individuals. The purpose of mutations is to introduce gengtriability. However, it is well known
that most mutations are harmful. In our case, mutations epe ik the system in order to test its
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capacity to produce new code, and its resilience to potgntdesrupting code. The production of
new useful code has not been verified in such short runs thdglhe other hand, the fact that the
system can still adapt in spite of harmful mutations is ancaiion that resilience at the population
level is possible even with the high rate of mutation chosep/(V = 12.5%). However this
system is obviously not perfect. There are still clienteetéd by low-performance individuals:
resilience is not achieved at the individual level. Funthere, as it adapts, the population also loses
genetic variability (this will be discussed in the next smt}. We believe this sort of drawback
can be diminished if resilient individuals incorporatireglundancy are used in place of the current
non-resilient ones.

4.4 Re-adaptation

In this experiment we investigate the capacity of a popoitetd readapt to an environment differ-
ent from the one where it has originally evolved. We injectopydation evolved in a 25% loss

environment into a no-loss and vice-versa, and repeat theuBRvith the same parameters as
described in the previous section.

16000
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Figure 5: Scores for two different re-adaptation situadidbeft: from 25% loss to 0% loss. Right:
from 0% loss to 25% loss.

Figure 5 shows the obtained scores. These results cleanly #tat the population is not able
to readapt. The lost retransmission modules cannot beatecteén such a short time by genetic
operators only. The homologous crossover used only reqmslaxisting modules, and mutations
of individual symbols is simply a too slow and randomizedgess. The search space for the
solution is far too vast, even though GP has shown to rembrkatus the search when compared
to pure random search. For example, in the RDP example ofé&RByuhere are about 20 different
symbols that may be placed at about 100 positions, leadiagéarch space of si26'°C. This is
still too vast for short-term on-line GP. A similar problenmagnalso occur in nature, when genetic
variability is lost in small populations adapted to a fashkable environment.

Nevertheless, if we inject a single optimally adapted iidiial in the population, it instantly
redeploys and the entire population readapts. This can beredd in Figure 6. After about
15 generations, more than 80% of its individuals achieveescoomparable to those of the best
individuals of the previous section.
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Figure 6: Inserting a single adapted individual. Scorep)(Bind percentage of high/low scores
(bottom) for different adaptation situations: Left: frorB% loss to 0% loss. Right: from 0% loss
to 25% loss.

45 Discussion

We can extract several lessons from these early experiméfgsirst discuss the aspects related to
genetic operators and other GP parameters. We then disduss fssues of resilience and on-line
evolution.

We have modeled homologous recombination which is geyeoatriooked in GP. By re-
stricting crossover to functionally compatible genes pwlg have a high probability of producing
viable individuals. In a few earlier experiments we haddr@ossover at arbitrary points, and
the result was the well-known GP phenomenon of intron bhggafb]. This phenomenon is the
accumulation of useless code in individuals, leading tautattipns of individuals with very large
genotypes, containing portions of code that serve no fanatipurpose, analogous to junk DNA
in living organisms. These junk portions however proteetitidividual from destructive crossover
operations, as the probability of crossover points fallimgjde an intron — and therefore not break-
ing existing useful functionality — increases with the gamnage of introns in the individual. As
soon as we introduced homologous recombination, the irgrowing problem disappeared.

However, homologous recombination in a limited populatdrsimple individuals with few
genes, as shown in the experiments, leads to low genetigbilits, and after a few generations
most of the variability is lost.

Mutation is usually regarded as the main source of genetiahidity in GP populations [5].
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However, the benefits of mutation can only be observed atehelong run, since most mutations
are lethal. In our short-run experiments, we have not beéntalbbserve really productive muta-
tions. We have to interpret these very preliminary resultf waution; nevertheless, they seem to
indicate that new, more intelligent techniques for evavjpopulations of genetic protocols need
to be devised to make on-line evolution a reality.

The parameters of a GP run clearly have an impact on the ewoduy process. Adjusting
these parameters is a well-known difficult problem in GP. 8oesearchers have inserted GP pa-
rameters into the genotypes evolved such that the best oatidoi of parameters can also emerge
from the evolutionary algorithm itself. This is a path weand to explore in our future work.

In our current experimental set-up, fithess evaluatioh st a centralized component. This
prevents the emergence of cheat programs, e.g. programketiadout transmitted or acknowl-
edged packets. Fitness evaluation is a non-trivial issuergal distributed on-line environment.
Perhaps redundancy and reputation mechanisms could bdremhib to provide a safe and reli-
able way to evaluate the behavior of protocols at run-time.

The next immediate step towards on-line evolution that veesgarting to investigate is how
to combine our previous resilience work [18] with genetiogmamming in order to add resilience
at the level of individuals, as opposed to the level of enpiopulations as described in the ex-
periments above. Each protocol is modeled as tuples of dedurgenetic code. This should in
principle improve resilience, and help preserving genedigability in small populations.

5 Conclusions and Outlook

In this report we propose an intrinsic approach to the autechavolution of network software
that can be used for automatic code deployment, self-caafign of functional modules and
even automatic synthesis of protocol implementations. sétere important elements of future
self-managing, autonomic networks in which protocol codestbe self-modifying. We argue
that the automated selection of protocols becomes feasiblke networking code isesilientsuch
that we can haveompetingprotocol variants running in parallel.

As a first exploratory step we report on adaption experimémas we carried out using ge-
netic programming to evolve code fragments based on a claéedecution model for protocols.
These early experiments show that a system can automwtgcadlgradually evolve depending on
the environment it is confronted with, provided that a miom variability of code instances is
kept. This observation relates both to identifying an optiprotocol implementation for a given
context, as well as to finding the most efficient combinatibseveral software modules.

A more complex task, that has yet to be demonstrated, is dm@mersion where software
evolution is a continuous activity. Our experiments havevgled some insights on the obstacles
that have to be overcome before this objective can be realig®r instance, fithess evaluation
in a decentralized and competitive environment is a naatrissue. Furthermore, we still lack
a solution for keeping variability and recreating lost ftiopality that might suddenly become
useful again. A fundamental issue is how to improve gengigrators to obtain clever program
transformation functions able to evolve genuine new codteddior unforeseen situations.
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