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Abstract

One of the biggest challenges in obtaining truly autonomic,self-
managed networks is to automate the process of software evolution, and
in particular, the evolution of protocol implementations and configura-
tions. Such networks ultimately requireself-modifying, evolvingproto-
col software. Otherwise humans must intervene in every situation that
has not been anticipated at design time. For this to become feasible au-
tonomic systems must ensure non-disruptive, resilient on-line software
evolution.

We are starting to explore approaches to network evolution that op-
erate directly at the code level. We investigate related code steering tech-
niques in two directions: One is the fully automatic selection of protocol
service elements where, depending on device characteristics and current
operation environment, each communication entity has to select among
a potentially wide variety of protocol implementations providing sim-
ilar services. The other direction relates to the automaticsynthesis of
new protocol elements which are the result of optimizing existing im-
plementations for a specific context. In both cases we look atgenetic
programming as a tool to generate new code and software configura-
tions automatically. We propose a framework for such a resilient pro-
tocol evolution and report on first exploratory results on the adaptation
and re-adaptation to environmental conditions, and the elimination of
superfluous code.
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1 Introduction

Managing change in a network and its services is currently a labor intensive task which is not au-
tomated. Any new algorithm must be engineered, then programmed, and deployed in the network.
Today this process is slow and requires the effort of many people (network managers, engineers,
programmers), which is outside the scope of autonomic networks. Networking software must be
able to adapt and reconfigure – i.e., to evolve – by itself in the most autonomous way possible.

Ultimately, protocols and algorithms for autonomic networks should evolve during their own
execution, with minimum service disruption. Such long termrun-time automated code evolution
is useful in two main situations: a need to optimize a given network service at run time, that
cannot be satisfied by just optimizing service parameters; in response to steady changes in the
environment or internal errors that require modifications within already deployed code.

At the same time, autonomic networks should be able to resistdisruptions (hence change), in-
cluding the actions of malicious or erroneous entities which try to disturb the network’s functional
blocks in any possible way. Ideally, these blocks would react by detecting and defeating such
attacks, and would then recover and heal themselves to continue providing the required services.
In case of failures, alternative service blocks would replace the non-functioning ones in a reactive
and non-supervised way.

With these problems in mind (simultaneous pressure to evolve and the requirement to resist
changes), we describe our framework for protocol evolutionbased on genetic programming. We
concentrate on two research directions: the first one is to automatically select combinations of
protocol modules adapted to given network conditions; the second is the automatic synthesis of
new protocols optimized for a specific context. In this report we show the feasibility of automatic
network software selection based on service agnostic target functions. This result is based on the
introduction of competition at the level of functional blocks and the use of genetic algorithms to
steer the selection process. We report our experimental results using simple case studies, still in a
simulated, off-line environment, but with considerationsand parameters intended to progressively
detach the framework from the off-line simulation out into the real world. We show the feasibility
of code trimming, context aware selection of protocol variants and their re-adaption to changing
environments using the proposed genetic programming framework.

This report is structured as follows: Section 2 summarizes the state of the art in program
and protocol evolution techniques. Section 3 states our position and describes our framework for
protocol evolution. Section 4 reports the experimental results obtained so far. Section 5 concludes
the report with our outlook for this new area.

2 State of the Art and Related Work

Automatic programmingor program synthesisrefers to any method for automated generation of
a computer program that is able to solve a given problem expressed in a high-level form. Exam-
ples include variations of meta-programming, deductive program synthesis [7], and evolutionary
methods such as genetic programming.

Deductive Program Synthesis[7] takes a program specification in the form of a theorem that
expresses the relationship between a given input and a desired output. It then proves the theorem
automatically, discovering the algorithm to go from input to output in the process. Because the
algorithm stems directly from the proof, it is proved to meetthe specification. Although promising,
the current state of the art in deductive program synthesis still relies on partial human assistance
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(interactive systems) and/or heuristics that do not guarantee success. Besides that, the technique
is applicable only in domains where the input and output of a program is well-known and can be
unambiguously defined.

Genetic Programming (GP)[5] is a machine learning method to evolve computer programs
automatically from random initial code, using genetic operations such as crossover and mutation,
and evolution by natural selection (“survival of the fittest”) to select the solutions that best satisfy
specified criteria. GP is typically employed when the solution to a problem is not known or very
difficult to program by hand.

Most of the work in genetic programming is based on off-line code generation. Once in opera-
tion, the generated code does not continue to modify itself to adapt to changing situations. One of
the reasons for that is that genetic operations cannot guarantee error-free code for each generated
program. The fitness of each program is typically tested off-line and only released after a suffi-
cient number of generations has evolved code that can be sufficiently trusted. Another drawback
of off-line generation is that code evolves in a simulated environment which inevitably makes
simplification assumptions, so problems may arise when transferring the code to the real world.

Although GP has been mostly applied to off-line solution of problems, it has also been used
to evolve new programs at run-time, in domains such as evolvable hardware [15] and robotics
[1, 16]. However, to the best of our knowledge, on-line evolution of networking protocol code has
not been tried yet.

In [8] genetic algorithms are applied in a decentralized wayto evolve agents that provide
network services. Although their work is still implementedvia simulations, their design aims at
on-line evolution. Their results show that evolution can improve agent performance. However,
in their scheme, the code itself does not change. They focus on the evolution of parameters that
trigger certain predefined behaviors.

Protocol synthesis[11] aims to generate a valid protocol specification that satisfies a supplied
service specification. A survey of synthesis methods is provided in [11]. The methods must
guarantee the safety and liveness properties of the synthesized protocols, meaning that these must
be guaranteed free from syntactic, logical and semantic design errors. Since these methods must
guarantee error-free code, they are still not feasible for on-line evolution.

Examples of machine learning methods applied to protocol synthesis include [2, 6, 10, 13, 14].
In [6, 10] an iterative deepening search approach is used to find protocol specifications that satisfy
a given set of security properties. In [10], a generator walks through the specification space and
feeds the found candidates to a protocol screener. In [6] this work is extended with a code generator
that transforms the found protocol specification into a Javaimplementation.

In [13] genetic search is used to synthesize protocol implementations from scratch. The syn-
thesized protocols are expressed as communicating finite state machines. This research is extended
in [14] and shows that relatively complex protocols can be synthesized in this way, and in certain
cases these protocols can even outperform a reference protocol designed and validated by human
beings. However in most cases the fitness of synthesized protocols is significantly lower than the
reference protocol.

In [2] an evolutionary method to synthesize communication protocols is proposed. Similar to
[13, 14], it also synthesizes finite state machines. Moreover it includes a method to derive a set of
input/output training sequences that assures semantic correctness of the generated protocol. They
show that optimum protocols can be generated for the simple case of a connection establishment
task.

In most of the existing work, protocol synthesis is regardedas a protocol engineering method
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to be applied at the design phase. In contrast, we are investigating protocol synthesis as a tool for
automated protocol evolution, to be incorporated as part ofthe tasks that an autonomic network
must handle during run-time, on a routine basis.

3 Evolving Communication Protocols

The main premise underlying our work is that software in an autonomic network must beself-
modifying. If the software was not self-modifying, it would mean that humans had to cater for the
software’s adaption every time that a case is encountered which was not anticipated at design time.
Our aim is to find a framework where software self-modification is carried out in a goal oriented
and non-disruptive way. Hence, we seek a mechanism which is agnostic to which function it adapts
as long as the mechanism is capable of steering the whole network into optimal configurations.

We envisage different levels at which self-modification of software takes place and different
time scales at which such modifications can happen. In order to cope with the constraints of a
realistic run-time environment, we aim first at optimizing existing working protocol code, as op-
posed to full protocol synthesis from scratch. A first step, aimed at a shorter time scale, is the
configuration of function blocks, where the challenge consists in selecting the right combinations
from ready-made modules. Today, this is mostly controlled by standardization process and inter-
operability tests. Although several systems able to dynamically reconfigure software have been
proposed, for instance [12, 19], most of these systems stillrely on humans to program exactly what
kind of reconfiguration should be performed under which circumstances.

In the future we imagine that a network “settles” by itself ondifferent protocol sets without
having humans to intervene. For example, depending on the available hardware, different “stack
profiles” could be selected for sensors, PCs or core routers.This selection process is also applica-
ble at finer time scales where for example an ad hoc network canswitch among different routing
algorithms, depending on the current topology. Another example would be the downloading of
networking code, as exemplified by instantiating TCP flavorsinside a TCP connection [9], where
end nodes have to settle on the optimal combination of options.

At a longer time scale, these self-modification scenarios could in principle be extended down
to the level of single instructions where the autonomic network would have the power to create
new implementation variants, instead of just manipulatingcoarse grained functional blocks. At
first, these new variants would emerge out of existing implementations. Eventually, full protocol
synthesis from scratch, at the level of single instructions, could become possible, leading to fully
autonomic networks.

3.1 Resilience and Competition

For such an autonomic selection process to work we need a modus operandi that permits adaption
(medium time scale) as well as evolution (long term). Adaption relates to the configuration of
existing functionality while evolution refers to the modification of old and generation of new
functions. We believe that two attributes of such a system are key for its viability: resilience and
competition.

The network must start withinherent resilience, otherwise there is a risk that (malicious or
erroneous) function blocks can be inserted that disrupt thenetwork’s operation. In other words:
adaption and evolution have to be activities that are running in parallel with the network and which,
in the worst case, may temporarily disturb the network but cannot inhibit its operation.
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The second attribute iscompetition: the autonomic network operates in a constant optimization
mode where it picks those function blocks and code variants which are best suited.

Both attributes are currently implemented by having humansperforming the adaption and
evolution, and by writing and selecting those software bundles which provide the best value. Often,
this human activity is not solely based on detailed analysisbut also includes a simple trial–and–
error strategy. Our goal is to rely on the later selection process only and to provide an environment
where new functionality or function profiles can be evaluated and selected without disrupting the
network.

3.2 Software Hardening and Genetic Programming

We have started to explore the feasibility of self-modifying communication software by demon-
strating protocol resilience, where protocol implementations can survive the removal of an arbi-
trary code line [18]. In the current report we explore genetic programming as a tool for modifying,
recombining and erasing protocol modules. Other machine learning methods or heuristics could
also be envisaged, for example, as has been demonstrated forthe synthesis of security proto-
cols [6, 10]. However, plain genetic programming lends itself for our project because it is agnostic
to the functions adapted, and naturally extends to the finer grained code evolution that enables
long-term synthesis and evolution.

Another choice we have made relates to the execution environment for the protocol software,
which should be amenable to genetic programming. Sequential code, for example, is less suitable
than a “chemical soup of rules” execution model [3, 4] because the executability of a linear code
sequence depends on almost each of its instructions. For ourexperiments we are currently using
our “Fraglets” chemical model [17], which also permits to express code mobility e.g., for evolving
code deployment logic. Section 3.5 gives a quick overview ofthe Fraglet model and describes its
useful properties which make it our model of choice for protocol synthesis and evolution.

3.3 A Framework for Automated Code Steering

Ideally, a software environment for an autonomic network should feature continuous adaption and
evolution: Alternative code variants should co-exist in parallel with the currently best selection
of protocol implementations. In terms of code steering, there would be a mechanism in place for
on-line evaluation and selection of the alternatives. Thison-line evolution has to be a continuously
ongoing process that is decentralized and asynchronous, working on each node and at many levels
inside the graph of functional modules.

Figure 1 shows a conceptual model of how resilience and competition work together to en-
able the automatic evolution of protocol implementations and configurations. Applications (or
any client protocol) delegate service provisioning to a resilient protocol implementation, and from
time to time or in parallel give a chance to test candidates. Based on their performance, new
service implementation variants can increase their chanceto be selected a next time. Service
variations do include different ways of combining sub-services. Because the evaluation and se-
lection mechanism takes into account the overall performance of a service implementation, it will
give preference to the service with the most optimal internal composition and configuration of
sub-services.

Our current implementation of the model of Figure 1 is still limited to off-line evolution, i.e. to
the case of synchronous evaluation and selection, so there are no concurrent services yet. However
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Figure 1: Conceptual framework for automatic protocol evolution

we plan to progressively detach it from the off-line sphere in favor of the long-term goal of on-line
evolution.

3.4 Genetic Programming Set-up for Protocol Evolution

We apply Genetic Programming to evolve communication protocols or protocol structures, which
are regarded as individuals in a GP population. A major difference between our system and clas-
sical genetic programming is that our GP run starts with a population of working or partially
working solutions, which may or may not be adapted to the taskin question. Another difference
is that our GP run is a continuous optimization process: the system must continuously adapt and
readapt. This is in contrast with classical off-line GP where the system runs until a termination
condition is satisfied; it then outputs the solution and stops.

The genotype is the metaphor for the protocol implementation code, and is manipulated from
one generation to the next through well-known genetic operators such as crossover, mutation and
cloning. Cloning simply produces an identical copy of an individual. Crossover combines the
genetic material of two individuals by swapping a segment ofthe first one with a segment of the
second one. Mutation randomly modifies a small portion of an individual. The way in which
genetic operators are combined to produce new individuals determines the speed of the search and
extent of the search space explored as the GP run progresses.The general rule is to submit the
best individuals of the population to crossover, and apply mutation with a small probability.

The crossover operator in our set-up is a simplified implementation of the genetic concept
of homologous recombination. Homologous recombination states that the exchange of genetic
material can only occur between functionally compatible DNA segments, and is only triggered
when the two DNA strands are completely aligned. This form ofrecombination preserves gene
functionality, promotes genetic stability, and increasesthe probability of producing viable off-
spring. We implement this concept by dividing the protocol genotype into modules that make up
the “genes” of the individual, and by allowing crossover to occur only at gene (module) boundaries
and between functionally equivalent modules. Modules are identified by a name, and crossover
operations are only allowed to exchange modules with identical names.

The fitness measure is the performance of the protocol as perceived by the applications. They
reward correct behavior and punish incorrect one when detected. For instance, the score of an
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individual is incremented when it performs the correct operation (e.g. successfully delivering a
packet), and it is decremented when an error is detected (e.g. an acknowledgment is issued for
a data item that has never been actually received). Resourceconsumption, in terms of memory
occupied by the genotype, is proportionally penalized.

We now describe the GP algorithm. For each generation, a tournament selection is held, as
follows:

1. Insert each individual of the population into its execution context (i.e. connect it to its
application and network environment), and run each of them for the same fixed amount of
time or execution cycles.

2. Extract the fitness scores for each individual in the population.

3. Select thenb best fit individuals and add them to the population of the new generation.

4. From the set ofnc fittest individuals, withnc > nb, selectnp ≤ nc/2 pairs of individuals at
random.

5. Perform crossover for each pair, producing2 · np new output code streams, which are then
added to the pool of new generation individuals.

6. If mutation is enabled, select a small numbernm of individuals at random within the set
of nc fittest, and perform a mutation on each of them. Add the resulting individuals to the
population of the next generation.

Traditional genetic programming models perform an off-line genetic search in which produc-
tion of offspring is synchronous and fitness evaluation is centralized. Our current experiments
are still limited to an off-line set-up, since we first need todemonstrate the basic viability of an
automatic selection process.

3.5 Fraglets

The Fraglet paradigm [17] has been proposed as part of our search for feasible ways to achieve
automated synthesis of protocol implementations. It is an instance of Gamma systems [3, 4], a
chemical model where “molecules” interact with each other or undergo some internal transfor-
mation. A fraglet is a string of symbols[ s1 : s2 : . . . : sn ] representing data and/or protocol
logic. It is a fragment of a distributed computation, that may be carried in packets or stored inside
a network node. The fraglet processing engine continuouslyexecutes tag matching operations on
the fraglets in the store, in order to determine the actions that should be applied to them. The fra-
glet instruction set contains two types of actions: transformation of a single fraglet, and “chemical
reaction” between two fraglets. The instruction set is described in [17, 18], along with examples
of processing and protocol functions. Table 1 summarizes the reaction and transformation rules
used in the examples of Section 4.

The fraglets model has many relevant properties that must behighlighted in connection with
automated protocol synthesis and evolution. First of all, any string of symbols is a valid fraglet,
therefore fraglets can be split at arbitrary places and merged with other fraglets to produce dif-
ferent code. A second property is the ability to express codeand data in a uniform way. Code is
manipulated just like any other form of data, and it is easy toexpress rules that generate and delete
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Table 1: Fraglet reaction and transformation rules
Reaction Input Output Semantics

match [ match : s : tail1 ], [ tail1 : tail2 ] concatenates two fraglets
[ s : tail2 ] with matching tags

matchp [ matchp : s : tail1 ], [ tail1 : tail2 ] persistent match
[ s : tail2 ] [ matchp : s : tail1 ] (preservesmatchp rule)

Transf.

dup [ dup : t : u : tail ] [ t : u : u : tail ] duplicates a symbol
exch [ exch : t : u : v : tail ] [ t : v : u : tail ] swaps two symbols
split [ split : t : . . . : ∗ : tail ] [ t : . . . ], [ tail ] breaks fraglet at∗ position
send A[ send : B : tail ] B[ tail ] (unreliably) sends fraglet fromA to B

wait [ wait : tail ] [ tail ] (after interval) waits a predefined interval
nul [ nul : tail ] [ ] fraglet is removed

code from the running pool. A third aspect is the ability to express code mobility in a natural way:
any fraglet can be regarded as either a set of packet header tags that can be processed by a header
processing engine, or as a program fragment that is executedat a given node. This facilitates the
dynamic deployment of new code logic.

A fourth property of the fraglet environment stems from its roots in Gamma systems: it en-
ables programs to be expressed in a highly parallel way that is very close to their specification,
without artificial sequentiality constraints. This is relevant for automated program synthesis and
evolution, in two ways: first, this parallelism can be used toproduce resilient programs as shown
in [18], which tolerate the loss of parts of their code stream, due to fallback alternatives running in
parallel. This can be used to diminish the impact of malfunctioning code. Secondly, the fact that
programs are relatively compact and close to their specification could open up potential avenues
for deterministic synthesis techniques based on specification.

4 Experiments

We have performed a few experiments using the fraglet environment to verify whether software
configurations can adapt to their environment, by the mere application of generic and service
agnostic GP methods. We start with a description of the protocols involved in the experiment
(Section 4.1), and then describe the results for three experiments: testing the capacity to eliminate
superfluous code (Section 4.2), adaptation to the environment (Section 4.3), and re-adaptation
(Section 4.4).

4.1 Protocol Implementations

A simple case is considered where a reliable delivery service must be provided over different
channel characteristics. The task is to transmit all packets from the client application, with ac-
knowledgment of correct delivery. Two types of underlying transmission channels are considered:

• Perfectly reliable channel: In this case, the protocol does not need to retransmit packets.
A simple implementation of this in fraglets is the confirmed delivery protocol (CDP) pre-
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sented in [17]. It simply transmits a given payload from nodeA to nodeB and returns an
acknowledgment fromB to A.

• Unreliable channel: In this case, the protocol must retransmit lost packets. A reliable de-
livery protocol (RDP) has been implemented for this purpose. It takes an input payload
from the application, sends it to the destination, stores a copy locally, and sets a waiting
timer. When the timer expires, and the corresponding local copy of the information is still
stored, the packet is retransmitted. When an acknowledgment is received, the local copy is
destroyed; this cancels any pending retransmissions scheduled for the item. For simplifica-
tion, no losses from sink to source are modeled.

Each protocol is encoded as a fraglet genotype made up of constituent modules or genes. The
genotype is the concatenation of all the modules (and their constituent fraglets) that implement the
protocol. Each module starts with an“m” marker followed by the module name.

m send
A[matchp : data : send : B : deliver]

m receive
B[matchp : ack : send : A : deliver : ack]

Figure 2: CDP implementation in fraglets

Fig. 2 shows the fraglet code for CDP, both sender and receiver sides. When presented with an
application payload of the formA[data : payload], the firstmatchp rule in thesendmodule will
be activated, and the resulting reaction will produce a ruleA[send : B : deliver : payload], which
will send the fraglet[deliver : payload] to B, where thedeliver tag will causepayload to be
delivered to the application. The application will respondby injecting aB [ack] fraglet, which will
react with thematchp rule of thereceivemodule, causing theack to be delivered to the source
application on nodeA. Note that thedeliver tag can be implemented as a predefined rule that
takes the tail symbol string out of the fraglet environment (towards an external application), or can
be caught by a[matchp : deliver : ...] rule as part of a fraglet application.

The RDP implementation is shown in Fig. 3. It has exactly the same interface with the
application as CDP, so that both protocols can be interchanged in a transparent way. A[data :
payload] fraglet injected by the application activates thesendmodule, producing two fraglets:
[retransmit : payload] and [mack : payload]. The first one triggers a retransmission loop
(retransmitmodule). The second one triggers a series of reactions whichproduce a new rule able
to treat an incomingack and cancel any corresponding retransmission.

Both CDP and RDP are very simple protocols able to handle onlyone packet at a time. But
they suffice to illustrate the concepts of evolutionary protocol module selection, code adaptation
and re-adaptation.

Several variants of CDP and RDP have been implemented to makeup a reasonably sized ini-
tial population for the GP run. Figures 2 and 3 show examples of correct implementations. Other
correct variants are also present in the experiments, as well as variants that introduce arbitrary de-
lays, consume more memory, contain useless code segments, pollute the code pool with byproduct
debris of reactions, and so on.

Crossover by homologous recombination is implemented by swapping modules of the same
name in different protocol implementations. Since the interface of each module is the same re-
gardless of its internal implementation, modules are compatible and crossover produces viable
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m send
[matchp : data : dup : data3]
[matchp : data3 : exch : data2 : mack]
[matchp : data2 : exch : data1 : ∗]
[matchp : data1 : split : retransmit]
[matchp : mack : exch : mack5 : nul]
[matchp : mack5 : exch : mack4 : ∗]
[matchp : mack4 : dup : mack3]
[matchp : mack3 : exch : mack2 : wait]
[matchp : mack2 : exch : mack1 : split]
[matchp : mack1 : match : ack : split :
deliver : ack : ∗ : match]

m retransmit
[matchp : retransmit : dup : t91]
[matchp : t91 : exch : t92 : t94]
[matchp : t92 : exch : t93 : ∗]
[matchp : t93 : split : transmit]
[matchp : t94 : dup : t95]
[matchp : t95 : exch : t96 : retransmit]
[matchp : t96 : dup : t97]
[matchp : t97 : exch : t98 : ∗]
[matchp : t98 : split : wait : match]
[matchp : transmit : send : B]

Figure 3: RDP implementation in fraglets (sender side)

individuals. Mutation may affect individuals with a low probability, changing a symbol at random
in the fraglet pool.

4.2 Stripping Protocol Implementations

In this first baseline experiment we test whether the system is able strip exceeding code, by elimi-
nating garbage that is arbitrarily added to the programs. Wetake the CDP implementation and add
several modules, some of which are empty, and some which perform random but non-disruptive
actions consuming CPU cycles.

We generate 10 such “polluted” individuals, and perform repeated GP runs of 50 generations
each, andnb = 4, nc = 8, np = 3, nm = 0. A typical result from these runs is that roughly 75%
of the garbage modules are eliminated. In a sample run, a relatively clean individual (with a single
garbage module remaining) emerges around the second generation, and progressively propagates
to the rest of the population. By the 7th generation, all individuals have a single garbage module.
In this example the system does not improve beyond that, because all the individuals have the
same garbage module, therefore homologous crossover is notable to eliminate it.

4.3 Adaptation

The goal of this experiment is to verify whether a mixed population of protocols is able to adapt
to a given environment. Our mixed population is composed of eight CDP and eight RDP variants.
These are alternative implementations of the same functionality. Some of them are perfect with
no known bugs, others are deliberately made inefficient to different degrees, for instance, by not
retransmitting packets correctly, or retransmitting too much, or spending a lot of time on bogus
tasks.

We insert this population into two GP runs. In the first run, the population faces a reliable
channel with no packet loss. In the second run a rather lossy channel (25% packet loss) is intro-
duced. For each run we choosenb = 6, nc = 14, np = 4, nm = 2. This results in a population
size ofN = nb + 2 · np + nm = 16 individuals per generation, which is the same size as the
original (hand-made) population.

Figure 4 shows the adaptation of the initially mixed population to these two loss environments.
The upper part shows the fitness scores for the different linkloss rates, and the lower part shows
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Figure 4: Absolute scores and percentage of high/low scoresfor different packet loss rates

the percentage of high and low-score individuals. A high-score individual is an individual that has
achieved a score equivalent to at least 80% of the best score from its generation. A low-score one
scores less than 40% of the best of its generation.

For the non-lossy channel (Figure 4 left), the population starts with a low average score, but
after a few generations most of the individuals have a score close to the best, and the percentage
of individuals with very low score is small. In this case, thebest individual is also the optimum
(hand-designed), and the GP selection process succeeds to keep it in the population through the
successive generations. After four or five generations the retransmission code is eliminated, and
the surviving individuals are all instances of CDP.

In the lossy channel the retransmission code spreads very quickly through the entire popula-
tion: all the individuals contain it after the first couple ofgenerations. In Figure 4 (top right) we
can notice that the best score achieved by RDP is much lower than its equivalent in CDP. This is
because the retransmit logic and associated timers consumeexecution cycles. Since all the indi-
viduals are allowed to consume the same amount of cycles, thesimple code achieves much higher
score. The adaptation to the environment can be observed in Figure 4 (bottom right): after roughly
15 generations, more than 80% of the population is made up of high-score individuals. At the
same time, the number of low-score individuals is reduced toa minimum.

In both lossy and non-lossy cases, mutations are mostly responsible for these low-performance
individuals. The purpose of mutations is to introduce genetic variability. However, it is well known
that most mutations are harmful. In our case, mutations are kept in the system in order to test its
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capacity to produce new code, and its resilience to potentially disrupting code. The production of
new useful code has not been verified in such short runs though. On the other hand, the fact that the
system can still adapt in spite of harmful mutations is an indication that resilience at the population
level is possible even with the high rate of mutation chosen (nm/N = 12.5%). However this
system is obviously not perfect. There are still clients affected by low-performance individuals:
resilience is not achieved at the individual level. Furthermore, as it adapts, the population also loses
genetic variability (this will be discussed in the next section). We believe this sort of drawback
can be diminished if resilient individuals incorporating redundancy are used in place of the current
non-resilient ones.

4.4 Re-adaptation

In this experiment we investigate the capacity of a population to readapt to an environment differ-
ent from the one where it has originally evolved. We inject a population evolved in a 25% loss
environment into a no-loss and vice-versa, and repeat the GPrun with the same parameters as
described in the previous section.
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Figure 5: Scores for two different re-adaptation situations: Left: from 25% loss to 0% loss. Right:
from 0% loss to 25% loss.

Figure 5 shows the obtained scores. These results clearly show that the population is not able
to readapt. The lost retransmission modules cannot be recreated in such a short time by genetic
operators only. The homologous crossover used only recombines existing modules, and mutations
of individual symbols is simply a too slow and randomized process. The search space for the
solution is far too vast, even though GP has shown to remarkably focus the search when compared
to pure random search. For example, in the RDP example of Figure 3, there are about 20 different
symbols that may be placed at about 100 positions, leading toa search space of size20100. This is
still too vast for short-term on-line GP. A similar problem may also occur in nature, when genetic
variability is lost in small populations adapted to a fairlystable environment.

Nevertheless, if we inject a single optimally adapted individual in the population, it instantly
redeploys and the entire population readapts. This can be observed in Figure 6. After about
15 generations, more than 80% of its individuals achieve scores comparable to those of the best
individuals of the previous section.
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Figure 6: Inserting a single adapted individual. Scores (top) and percentage of high/low scores
(bottom) for different adaptation situations: Left: from 25% loss to 0% loss. Right: from 0% loss
to 25% loss.

4.5 Discussion

We can extract several lessons from these early experiments. We first discuss the aspects related to
genetic operators and other GP parameters. We then discuss future issues of resilience and on-line
evolution.

We have modeled homologous recombination which is generally overlooked in GP. By re-
stricting crossover to functionally compatible genes only, we have a high probability of producing
viable individuals. In a few earlier experiments we had tried crossover at arbitrary points, and
the result was the well-known GP phenomenon of intron bloating [5]. This phenomenon is the
accumulation of useless code in individuals, leading to populations of individuals with very large
genotypes, containing portions of code that serve no functional purpose, analogous to junk DNA
in living organisms. These junk portions however protect the individual from destructive crossover
operations, as the probability of crossover points fallinginside an intron – and therefore not break-
ing existing useful functionality – increases with the percentage of introns in the individual. As
soon as we introduced homologous recombination, the introngrowing problem disappeared.

However, homologous recombination in a limited populationof simple individuals with few
genes, as shown in the experiments, leads to low genetic variability, and after a few generations
most of the variability is lost.

Mutation is usually regarded as the main source of genetic variability in GP populations [5].
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However, the benefits of mutation can only be observed at the very long run, since most mutations
are lethal. In our short-run experiments, we have not been able to observe really productive muta-
tions. We have to interpret these very preliminary results with caution; nevertheless, they seem to
indicate that new, more intelligent techniques for evolving populations of genetic protocols need
to be devised to make on-line evolution a reality.

The parameters of a GP run clearly have an impact on the evolutionary process. Adjusting
these parameters is a well-known difficult problem in GP. Some researchers have inserted GP pa-
rameters into the genotypes evolved such that the best combination of parameters can also emerge
from the evolutionary algorithm itself. This is a path we intend to explore in our future work.

In our current experimental set-up, fitness evaluation still has a centralized component. This
prevents the emergence of cheat programs, e.g. programs that lie about transmitted or acknowl-
edged packets. Fitness evaluation is a non-trivial issue ina real distributed on-line environment.
Perhaps redundancy and reputation mechanisms could be combined to to provide a safe and reli-
able way to evaluate the behavior of protocols at run-time.

The next immediate step towards on-line evolution that we are starting to investigate is how
to combine our previous resilience work [18] with genetic programming in order to add resilience
at the level of individuals, as opposed to the level of entirepopulations as described in the ex-
periments above. Each protocol is modeled as tuples of redundant genetic code. This should in
principle improve resilience, and help preserving geneticvariability in small populations.

5 Conclusions and Outlook

In this report we propose an intrinsic approach to the automated evolution of network software
that can be used for automatic code deployment, self-configuration of functional modules and
even automatic synthesis of protocol implementations. These are important elements of future
self-managing, autonomic networks in which protocol code must be self-modifying. We argue
that the automated selection of protocols becomes feasibleif the networking code isresilientsuch
that we can havecompetingprotocol variants running in parallel.

As a first exploratory step we report on adaption experimentsthat we carried out using ge-
netic programming to evolve code fragments based on a chemical execution model for protocols.
These early experiments show that a system can automatically and gradually evolve depending on
the environment it is confronted with, provided that a minimum variability of code instances is
kept. This observation relates both to identifying an optimal protocol implementation for a given
context, as well as to finding the most efficient combination of several software modules.

A more complex task, that has yet to be demonstrated, is an on-line version where software
evolution is a continuous activity. Our experiments have provided some insights on the obstacles
that have to be overcome before this objective can be realized. For instance, fitness evaluation
in a decentralized and competitive environment is a non-trivial issue. Furthermore, we still lack
a solution for keeping variability and recreating lost functionality that might suddenly become
useful again. A fundamental issue is how to improve genetic operators to obtain clever program
transformation functions able to evolve genuine new code suited for unforeseen situations.
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[4] Jean-Pierre Banâtre and Daniel Le Métayer. Gamma and the Chemical Reaction Model.
Internal Publication PI-984, INRIA, France, February 1996.

[5] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone.Genetic Pro-
gramming, An Introduction. ISBN 155860510X. Morgan Kaufmann Publishers, Inc., 1998.

[6] A. Perrig D. Song and D. Phan. AGVI – Automatic Generation, Verification, and Implemen-
tation of Security Protocols. InProc. 13th Conference on Computer Aided Verification (CAV
2001), July 2001.

[7] Zohar Manna and Richard Waldinger. Fundamentals of Deductive Program Synthesis.IEEE
Transactions on Software Engineering, 18(8):674 – 704, August 1992.

[8] Tadashi Nakano and Tatsuya Suda. Adaptive and EvolvableNetwork Services. InProceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO-2004), Springer-
Verlag LNCS 3102, pages 151–162, 2004.

[9] P. Patel, D. Wetherall, J. Lepreau, and A. Whitaker. TCP Meets Mobile Code. InProc. of the
Ninth Workshop on Hot Topics in Operating Systems. IEEE Computer Society, May 2003.

[10] A. Perrig and D. Song. A First Step towards the AutomaticGeneration of Security Protocols.
In Proc. Network and Distributed System Security (NDSS 2000), February 2000.

[11] Robert L. Probert and Kassem Saleh. Synthesis of Communication Protocols: Survey and
Assessment.IEEE Transactions on Computers, 40(4):468 – 476, April 1991.

[12] Lukas Ruf, Ralph Keller, and Bernhard Plattner. A Scalable High-performance Router
Platform Supporting Dynamic Service Extensibility On Network And Host Processors.
In Proceedings of the 2004 ACS/IEEE International Conferenceon Pervasive Services
(ICPS’2004), pages 19–23, Beirut, Lebanon, July 2004.

[13] N. Sharples and I. Wakeman. Protocol construction using genetic search techniques. In
Real-World Applications of Evolutionary Computing – EvoWorkshops 2000, Springer-Verlag
LNCS 1803, Edinburgh, Scotland, April 2000.

14

L. Yamamoto and C. Tschudin, Experiments on the Automatic Evolution of Protocols ...



[14] Nicholas Sharples.Evolutionary Approaches to Adaptive Protocol Design. PhD dissertation,
University of Sussex, UK, August 2001.

[15] Moshe Sipper, Eduardo Sanchez, Daniel Mange, Marco Tomassini, Andres Perez-Uribe, and
Andre Stauffer. A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired Hardware
Systems.IEEE Transactions on Evolutionary Computation, 1(1), April 1997.

[16] Luc Steels. Emergent functionality in robotic agents through on-line evolution. InProceed-
ings of AlifeIV, Cambridge, MIT Press, 1994.

[17] C. Tschudin. Fraglets - a Metabolistic Execution Modelfor Communication Protocols. In
Proceeding of 2nd Annual Symposium on Autonomous Intelligent Networks and Systems
(AINS), Menlo Park, USA, July 2003.

[18] Christian Tschudin and Lidia Yamamoto. A Metabolic Approach to Protocol Resilience.
In Proceedings of the 1st Workshop on Autonomic Communication(WAC 2004), Springer-
Verlag LNCS 3457, pages 190 – 205, Berlin, Germany, October 2004.

[19] K. Whisnant, Z. T. Kalbarczyk, and R. K. Iyer. A system model for dynamically reconfig-
urable software.IBM Systems Journal, 42(1):45–59, 2003.

15

L. Yamamoto and C. Tschudin, Experiments on the Automatic Evolution of Protocols ...


