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Abstract

One important problem in communication protocol engineering is to pre-
dict and analyze the dynamic behavior of protocols. Chemical Networking
Protocols (CNPs) – a recently proposed design method inspired by chemical
reactions – offers the opportunity to transpose the good and well-understood
analyzability of chemical reactions to networking protocols. In this paper,
we provide a novel method to analyze the dynamics of “chemical proto-
cols”. We suggest to study their average flow properties by exploiting tools
from several well-established fields, such as model linearization proposed
in Metabolic Control Analysis, a state-space description classically used in
control theory, and the system’s characterization in the frequency domain,
which is central to signal theory. With our contribution, CNP designers can
easily determine the key parameters of their protocols and understand how
to calibrate them in order to obtain the desired behavior. We demonstrate
the feasibility of our method by applying it to an actual chemical congestion
control protocol and highlight formerly unknown protocol features.
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1 Introduction

Predicting and controlling the dynamics of communication protocols are difficult but important
challenges in communication systems engineering. Understanding the protocol dynamics is
becoming difficult in the complex and large scale networks of today such as the Internet. While in
the early days of computer networks, the researchers’ attention was on merely functional aspects,
in the last three decades, their focus shifted towards mastering the dynamics. This is reflected in
the literature, which has been enriched by numerous complex studies about dynamic properties of
packet streams [19, 2].

The first step towards understanding the dynamics of protocols is to build an abstract model and
to reduce it to an analytically tractable system. Fluid models, for example, focus on the average flow-
level properties by abstracting away from the underlying detailed stochastic behavior [25, 28, 20].
Such abstractions however bear some problems: they have to be extracted manually from the
already existing source code, and they often over-simplify the behavior of the real protocol.

By drawing an analogy with chemistry, Chemical Networking Protocols (CNPs) [23] offer a
new way to describe protocol dynamics through a fluid model that is accurate and easy to obtain.
Because the dynamics of chemical protocols is very close to the dynamics of chemical reactions,
engineers can exploit well-established tools from chemistry in order to design and analyze the
behavior of their protocols. In CNPs, each packet is represented by a virtual molecule that reacts
with other packets according to the stochastic laws of chemical kinetics. As a result, the dynamic
evolution of CNPs can be exactly described by the Chemical Master Equation (CME) [22]. Because
the CME suffers from a combinatorial state explosion, finding a solution is cumbersome and often
even impossible [14].

A better approach is to reduce the model to a set of non-linear Ordinary Differential Equations
(ODEs). Gillespie proved that this model accurately predicts the trajectory of the system for most
of the cases [8]. This fluid model has two advantages over the detailed stochastic analysis: First, it
reduces the complexity of the analysis, and second, it can be generated directly and automatically
from the topology of the corresponding reaction network.

This paper proposes an extension to the study of CNP dynamics. Beyond previous analysis
approaches, where only the steady-state behavior has been looked at, or where numerical ODE
solutions have been given, we aim at studying the transient behavior of CNPs for arbitrary initial
conditions. We therefore analyze the fluid model of CNPs in the frequency domain by exploiting
tools that are well established in fields such as signal processing or control theory. In order to
analyze generic non-linear reaction models, we propose to evaluate the system responses in terms
of small external perturbations around the equilibrium. With a linearization around the steady
state, we avoid the exceptional complexity of methods that are based on the multi-dimensional
Laplace transform [15].

In particular, this paper shows how the Metabolic Control Analysis (MCA) (first proposed in
[11], introduced in [27], and then further extended in [12]) can be transposed from biology to the
analysis of CNPs. With our analysis, we also simplify the design phase of CNPs by identifying
the protocols’ key parameters and showing how they can be calibrated for obtaining the optimal
performance.

The remainder of this paper is organized as follows: Sect. 2 reviews Chemical Networking
Protocols (CNPs) and demonstrates with a simple example how this paradigm establishes a
relationship between networking protocols and chemistry. Section 3 introduces an actual chemical

2

M. Monti, T. Meyer, M. Luise, C. Tschudin Analyzing CNPs with a Signal Processing Approach



protocol that implements a simple congestion control algorithm. Section 4 describes the tools that
are well established in other fields and that we apply to study CNP dynamics, whereas in Sect. 5,
we show an application of our method through the analysis of the chemical congestion control
algorithm. Finally, Sect. 6 discusses the features and limitations of our approach.

2 Chemical Networking Protocols (CNPs)

We start this paper by providing a compact introduction to chemical protocols. This should help the
reader to understand our contribution in this novel research area. We first introduce the chemical
packet metaphor followed by the concept of artificial chemistry and its use in computer networks.
We then summarize already existing approaches to analyze the dynamics of CNPs and identify
their problems.

2.1 Modeling Communication in a Chemical Way

Traditionally, protocol execution is handled by a state machine that, upon reception of a packet,
synchronously changes its internal state. Here, we introduce a “molecule metaphor” where each
packet is treated as a virtual molecule. Molecules react with other molecules in a reaction vessel
(node). A reaction may produce other molecules being delivered to the application or being sent
over the network. In such a chemical perspective, we obtain a web of reactions that together
perform a distributed computation, called Chemical Networking Protocol (CNP).

Each network node contains a multiset of a finite set of molecule species S = {s1, . . . , s|S|}
(=packet types). In addition, each node defines a set of reaction rulesR = {r1, . . . , r|R|}, expressing
which reactant molecules can collide and which molecules are generated during this process. Such a
set of reactions, which constitute a protocol, is typically represented by chemical reaction equations,
e.g.,

r1 : Wi + Di
k1−→Wi + Dj (1)

r2 : Wi + Li
k2−→ Li

r3 : Li
k3−→ ∅

r4 : ∅
vinc−→W

r5 : ∅
vloss1−→ L

For example, reaction r1 in node i consumes, if present, two molecules W and D from the local
multiset, regenerates W and sends molecule D to neighbor node j. Reactions may also destroy
molecules (r3) or generate new molecules (r4, r5). The reaction network above is also depicted in
the gray box of Fig. 2(b).

A node that receives a molecule places it into its local multiset. Reaction rules that may consume
(=process) the new molecule are however not executed immediately. They are rather scheduled for
a later time based on an exponential time distribution. Such an algorithm A (e.g., [7, 6]) mimics
chemical reaction kinetics on the microscopic level and forces the Law of Mass Action (LoMA)
on the macroscopic level. The LoMA [1, 30] states that the reaction rate is proportional to the
concentration (quantity) c of all reactant molecules: In our reaction r1, molecules W1 and D1 react at
average rate v1 = k1cW1 cD1 , which is equal to the rate at which node i sends D-molecules to node j.
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2.2 A Formal Artificial Chemistry for Networking

A CNP can be formally specified as a distributed version [23, 22] of an artificial chemistry [5, 4]
by the quadruple ADC = (G,S ,R,A). The graph G = (V , E) represents the computer network,
where V is the set of nodes (chemical reaction vessels) and E is the set of undirected network links
connecting the nodes.

The set of reaction rulesR is formally expressed by the chemical reaction equation

r ∈ Ri : ∑
s∈Si

χsrs kr−→ ∑
s∈Si

ξsrs. (2)

The reaction coefficient kr defines the reaction speed, the integers χsr and ξsr are the stoichiometric
reactant and product coefficients that denote the number of s-molecules consumed and produced by
reaction r, respectively. Note that all reactants must reside in the same node in order to react, while
the products may also be produced in one of the direct neighbors of node i.

The algorithm A defines the dynamical behavior of the artificial chemistry, namely which
reaction is executed when. A possible implementation ofA is the “real-time next reaction algorithm”
[22], a variant of an algorithm originally proposed in [6] to simulate real chemical reactions.
The algorithm computes the probability that reaction r ∈ Ri occurs in the next infinitesimal
period [t, t + dt). This probability is given by the propensity function vr, which depends on the
concentration vector c = (c1, . . . , c|S|)T:

r ∈ R : vr(c) = kr ∏
s∈S

xχsr
s (3)

2.3 Approximation of the Chemical Model Behavior

Real chemical reactions exhibit the same reaction probabilities, and it is well known that the
stochastic evolution of chemical reactions can be described by the Chemical Master Equation (CME)
[21]. In theory, CNP designers could use the CME to study the exact behavior of protocols at
the microscopic level. However, the CME suffers from the known curse of dimensionality: Each
species adds one dimension to the problem, leading to a combinatorial growth of the computational
complexity. For a model of N species, each being represented by a maximum of M instances, the
CME consists of one equation per state, resulting in MN coupled differential equations. Even
though the CME is solvable for simple systems such as linear first order reaction networks [14], it
cannot be solved for more complex systems.

At the macroscopic level, chemical kinetics can be approximated by deterministic Differential
Rate Equations (DREs) [17]. The computational work required to solve them is considerably smaller.
The average trajectory of a reaction network can now be evaluated by solving a system of ODEs,
containing only one ODE per species. This deterministic approximation is valid only if we are
dealing with large species concentrations; intuitively, the higher the number of molecules per
species is, the lower is the effect of random fluctuations. This approximation is also supported by
the empirically observed “Law of Mass Action” [1, 30], which states that in a free and homogeneous
medium the reaction rate is proportional to the concentration of the involved reactants.

In the CNP setting, this means that packets of the same type are building up a “pressure” for
the reactions processing them. We are able to express the dynamics of CNPs as time derivative of
the species concentration vector c expressed as

ċ = Ψ · v(c). (4)
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In this expression, Ψ = [ψ]sr is the stoichiometric matrix whose elements represent the difference
between the stoichiometric product and reactant coefficients: ψsr = ξsr − χsr. The propensity vector
v = (v1, . . . , v|R|)T simply lists the reaction rates.

Even though we have reduced the complexity of the mathematical model, there are still prob-
lems in obtaining useful information about the protocols’ behavior: We often deal with multi-
molecular reactions, resulting in non-linear ODEs that are hard to solve. We could solve the ODEs
numerically, but only for one particular scenario at a time (e.g., one external stimulus, one set of
initial conditions). We rather aim at studying the dynamics in a more general way. But before
we provide a solution to this problem, we present a simple example that illustrates the concepts
introduced so far.

2.4 A Simple Example

The following example demonstrates how the CNP paradigm establishes a relationship between
a networking entity (a packet queue) and chemistry, through the unimolecular reaction depicted
in Fig. 1. A molecular species S can be seen as a packet queue that temporarily stores molecules

voutSvin
k

(a) Abstract Chemical Model: Uni-
molecular (Linear) Reaction

cS

vout
S

vin
k

(b) Corresponding FIFO Queue

Figure 1: Species/Queue analogy: Packets (=molecules) arrive at queue (=molecular species) S with a rate of
vin. The service rate of the queue is proportional to (i) its concentration (=fill level) cS and (ii) the reaction
coefficient k: vout = kcS.

(=packets) until an egress reaction consumes them with a rate of vout = kcS, according to the
LoMA. The term cS denotes the concentration of the S-species, i.e., the fill level of the queue. The
egress reaction is equivalent to a non-work-conserving server, which services the queue with a rate
proportional to its fill level cS and to the coefficient of the reaction k. A zero-order reaction models
the arrival process with a rate of vin packets per second. The behavior of the queue’s reaction
network in Fig. 1(a) can be given in the chemical ODE notation (4) as

ċS = vin − kcS. (5)

Such a chemical queue cannot be used to limit the transmission rate to the link capacity as work-
conserving queues usually do. Instead, the queue exhibits low-pass characteristics, meaning that
it is able to effectively dampen packet bursts. We aim to provide methods to find out what kind
of filter or behavior a chemical protocol implements – not only for this simple queue, but for an
arbitrary “chemical queueing network”.

3 A Chemical Congestion Control Algorithm

This section introduces an actual chemical protocol that is more complex than the simple queu-
ing example discussed before – a Chemical Congestion Control Algorithm (C3A). The role of a
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Sender 1

Sender 2

vout1

vout2

vtot

vloss

R
Receiver 1

Receiver 2

vack1

vack2

+

(a) Channel sharing communication model

Sender 2

Wvinc

k2

D k1

k3

L

∅ ∅

vout1

vloss1 = vout1
vtot

(R − vtot)
Sender 1

vout2

+
vtot R

vloss2

(b) The chemical reaction network of C3A

Figure 2: A general model of two packet streams sharing the same channel (a), and the chemical reaction
network of C3A that implements the chemical congestion control algorithm in sender 1 (b).

congestion control algorithm is to provide efficient and fair utilization of the network’s capacity
for multiple competing streams running over the same capacity-limited channel. Without loosing
too much generality, Fig. 2(a) shows the simplest scenario where only two streams are sharing a
channel with capacity R. Sender 1 is equipped with an implementation of C3A, originally proposed
in [22] and [24]. Sender 1 contains the reaction network shown in Fig. 2(b). These virtual chemical
reactions take care to immediately throttle the transmission rate if a lost packet is detected via a
sequence number gap in the stream of returned acknowledgments. The protocol has a behavior sim-
ilar to TCP Renos additive increase / multiplicative decrease mechanism [13], but is implemented
by just coupling the “right” chemical reactions as follows:

The application layer (not shown) is responsible to take the next data packet from the transmit
queue and put it into the reaction vessel as a D-molecule as soon as a data packet has been sent.
In chemical terms, data species D is buffered and contains a constant amount of instances (e.g.,
cD = 1 pkt = const.). The concentration cW of the window-species W controls the transmission rate
of sender 1 according to the LoMA: vout1 = k1cDcW. The concentration of W-molecules increases
continuously at constant rate vinc as long as no packet loss is detected. This inflow of W-molecules
mimics the additive (linear) increase mechanism of TCP-Reno.

Depending on the packet rate vout2 of sender 2, which competes for the link capacity, some data
packets may be lost. The total link loss rate is vloss = max(vtot − R, 0). If we assume statistical
multiplexing, this total loss rate affects the two streams from sender 1 and 2 pro rata, resulting in a
packet loss rate for sender 1 of vloss1 = vloss(vout1/vtot).

This loss rate triggers the selective feedback mechanism [3] of C3A. In particular, each lost packet
generates an L-molecule. In proportion to the concentration of L, cL, a fast reaction (coefficient
k2) quickly removes W-molecules, which causes an immediate reduction of the transmission rate
vout1. The duration of this decrease is controlled by the lifetime of L-molecules, which decay via
the reaction with coefficient k3. This feedback mechanism leads to an exponential decrease of the
transmission rate, which is comparable to the multiplicative decrease of TCP-Reno.

Since this algorithm implements congestion control with coupled chemical reactions only, it is
straight forward to automatically derive a mathematical description of the system’s behavior. The
dynamics of the chemical model in Fig. 2(b) can be described using the ODE approximation (4),
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leading to one equation for each molecule species:

ċW =

lin. increase︷︸︸︷
vinc −

exp. decrease︷ ︸︸ ︷
k2cWcL (6a)

ċL = (k1cWcD + vout2 − R)
k1cWcD

k1cWcD + vout2︸ ︷︷ ︸
pro rata packet loss

− k3cL︸︷︷︸
decay of L

(6b)

Note that (6) is a system of coupled non-linear differential equations that is not trivial to solve
directly. In addition, from the mere solution of (6), it is difficult for protocol designers to know which
control parameters define the protocol behavior and how these parameters should be calibrated
in order to let the protocol behave in the desired way. Another challenge that we are facing is
the problem to predict the protocol dynamics in response to several different input stimuli: e.g.,
how does sender 1 adapt its transmission rate in response to a burst of a competing stream, or in
response to different packet loss probabilities? These challenges can be addressed with a signal
processing and control theory approach.

4 Signal Processing and Control Theory Applied to CNPs

This section provides the foundation of our approach to analyze CNP dynamics. It summarizes
the tools that are available in other fields and that we have transposed to CNPs. But first, we give
some motivation for their application to the analysis of protocol dynamics.

4.1 Motivation and Method Overview

Our aim is to make the study of CNP dynamics as simple as possible while preserving sufficient
accuracy. For this reason, we avoid the complexity of the CME and use coupled ODEs instead. That
is, we focus on the average trajectory of the stochastic process. Note that our analysis deals with
deterministic continuous-valued signals rather than stochastic time-continuous discrete-valued
signals. This approximation implicitly assumes that molecular concentrations are sufficiently high.

Direct solutions of coupled ODEs have two limitations: they are non-trivial to obtain for systems
with non-linearities (often, CNPs require such non-linear reaction models) and they describe system
responses to one specific input stimulus only. Both limitations can be overcome by first linearizing
the model around its steady state and by analyzing it in the frequency domain.

We linearize reaction networks by using a method from biology – the Metabolic Control Analysis
(MCA). MCA was first proposed in [11] and [16] and then introduced in [27] with the purpose of
understanding the sensitivity of biological processes. Such a linearization reduces the analytical
complexity that we would encounter otherwise (e.g., when using methods that directly account for
the systems’ non-linearities [18, 15]).

We are now dealing with a linearized model and are allowed to apply the Laplace Transform to
determine the transfer function of the system in the frequency domain [12]. With this transforma-
tion – from functions with a real dependent variable (i.e., the time) into functions with a complex
dependent variable – we convert linear coupled ODEs into algebraic expressions that are easier to
manipulate. Furthermore, the frequency transform of the system is valid for arbitrary stimuli. This
allows us to characterize the system’s response in a more general way than in the time domain.
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As a next step, we make use of “control theory” tools, in particular the state-space description
of Linear Time Invariant (LTI) models, as proposed in [12]. In this way, the behavior of CNPs can
be predicted not only in response to constant perturbations, but also in response to other varying
internal and external perturbation channels. External perturbations include for example tunable
protocol parameters, inflow and outflow rates, and protocol configurations, whereas internal
perturbations cover reaction coefficients, molecule concentrations, and internal reaction rates, to
name a few.

In summary, our analysis procedure makes use of the LTI state-space model description. For
this purpose, the system must first be linearized around its fixed points (Sect. 4.2). Second, the
inputs and outputs of the system must be identified (Sect. 4.3). Third, standard methods from
control theory can be applied to calculate the frequency response of the system (Sect. 4.4). Each
element of the frequency transform matrix represents how a perturbation on one input parameter
affects one of the observable outputs.

4.2 Linearization of the ODEs

We first make the ODE description of a CNP (4) dependent on a vector of external perturbations p,
which represent the input signals of our analysis:

ċ(t) = Ψ · v (c(t), p(t)) (7)

Again, c is the vector of approximated concentrations per species, Ψ the stoichiometric matrix of
the reaction network, and v is the propensity (reaction rate) vector.

Then, we perform a local perturbation analysis that avoids to deal with the non-linearities of (7)
by focusing only on the fluctuations around the steady states of the system, c∗, p∗:1

x(t) = c(t)− c∗ (8a)
u(t) = p(t)− p∗ (8b)

The vectors x and u represent deviations from the nominal state and from nominal parameter
values, respectively. To this end, we can approximate the behavior of a CNP with the linear equation

ẋ(t) = Ψ · ∂v
∂c

∣∣∣∣
(c∗,p∗)

· x(t) + Ψ · ∂v
∂p

∣∣∣∣
(c∗,p∗)

· u(t) (9)

This linear ODE is a good approximation around the steady state. It describes the system’s response
to small variations of all parameters p, i.e., to all kinds of internal and external perturbations [12].

Note that (7) and (9) may contain redundant equations. This happens if the chemical reaction
network contains loops, i.e., when there are conservation constraints [26]. In this case, MCA
usually simplifies the stoichiometric matrix Ψ by using Gauss Jordan elimination with partial
pivoting, resulting in a reduced row Echelon form of Ψ. As this “simplification” does not provide
an improvement in the analysis procedure, we ignore this step in this paper.

1Steady states are calculated by studying (4) at equilibrium, i.e., by solving ċ(c, p) = 0.
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4.3 State-Space Representation and Definition of Input and Output Signals

After we linearized the ODEs around the steady state, we express the system in “control theory”
terms and refer to the traditional state-space representation of LTI systems, as proposed in [26]:

ẋ(t) = A · x(t) + B · u(t) (10a)
y(t) = C · x(t) + D · u(t) (10b)

The state matrix A defines how a perturbation of the concentrations (state variables) affect their
future change. This matrix is equal to the Jacobian matrix evaluated at the fixed point:

A = Ψ · ∂v
∂c

∣∣∣∣
(c∗,p∗)

(11)

The input matrix B indicates how external perturbations (i.e., perturbations of protocol input
configurations) affect fluctuations of the state; this is also evaluated at the fixed point:

B = Ψ · ∂v
∂p

∣∣∣∣
(c∗,p∗)

(12)

The output matrix C and the feedforward matrix D define what output we are interested in.
They must be appropriately chosen according to the response we want to analyze. Often we
are interested in two typical output configurations: (i) molecular concentrations, and (ii) reac-
tion/transmission rates. (i) In order to analyze the fluctuations of molecular concentrations with
respect to perturbations of the input parameters, we define

C = I (13a)
D = 0 (13b)

yielding y(t) = c(t). (ii) In order to look at the fluctuations of the reaction rates with respect to a
perturbation of the input parameters, we define

C =
∂v
∂c

∣∣∣∣
(c∗,p∗)

(14a)

D =
∂v
∂p

∣∣∣∣
(c∗,p∗)

(14b)

4.4 Signal Analysis in the Frequency Domain

Since our new model is linear, we can make use of the Laplace transform L { f (t)} =
∫ ∞

0 e−st f (t) dt
to transpose the time-domain interpretation (10) into the following frequency-domain interpretation:

s · x(s)− x0 = A · x(s) + B · u(s) (15a)
y(s) = C · x(s) + D · u(s) (15b)
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The vector x(s) is the Laplace transform of the deviation from the nominal state, y(s) is the Laplace
transform of the output, u(s) is the Laplace transform of deviation from the nominal parameters,
and x0 is the initial condition vector. The state vector results in

x(s) = (s · I−A)−1 x0 + (s · I−A)−1 B · u(s) (16)

and the output vector is

y(s) = C (s · I−A)−1 x0 +
(

C (s · I−A)−1 B + D
)

u(s) (17)

From (17), and by assuming no initial perturbation (x0 = 0), we are able to derive the Transfer
Function (TF) of the LTI system:

H(s) =
y(s)
u(s)

= C (s · I−A)−1 B + D (18)

The TF matrix H gives us the transient behavior of all steady-state output deviations y w.r.t.
perturbations on all inputs u.

5 Analyzing C3A through a “Signal Processing Approach”

This section provides a tangible example of our approach to analyze the dynamics of CNPs. It
reports specific results for the Chemical Congestion Control Algorithm (C3A) that we introduced
in Sect. 3.

First, we identify inputs and outputs of the analysis and the initial system setting (Sect. 5.1).
In Sect. 5.2, we then provide the transfer function that characterizes the C3A. Next, we look at its
step-response in Sect. 5.3, where we also identify the key-quantities related to its time-behavior. In
Sect. 5.4, we review the findings made so far. Then, in Sect. 5.5, we complement our analysis by
comparing it to simulation results and discuss it in Sect. 5.6.

5.1 Defining Inputs and Outputs of the Analysis

The aim of our analysis is to detect the key parameters of C3A. We study the ability of sender 1 to
adapt its transmission rate vout1 dynamically to the channel capacity R and to the traffic generated
by competing senders with a cumulative transmission rate of vout2 (see Fig. 2).

For these requirements we define our system as follows: The internal state of the system is given
by the concentration of the two volatile species: (cW, cL). The vector of input signals contains only
one element – the perturbation of vout2: u = (vout2). The observable output signal of our model
shall be the transmission rate of sender 1, vout1 = k1cW.2 Note however, that this transmission rate
is neither a concentration of a species nor a reaction rate that appears in our ODE model (6), and
consequently, it cannot be derived directly with one of the two methods (13) or (14). But we can
use a little trick here: Since the transmission rate is proportional to the concentration of W, we use
(13) to obtain the response to perturbations of cW in the frequency domain and multiply it by the
reaction coefficient k1 to obtain vout1.

2We set cD = 1 = const. because D is buffered.
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We assume that initially the system is in steady state and that sender 2 is silent. Consequently,
sender 1 should be able to fully exploit the channel capacity R as no other users are sharing the
channel. We then perturb the transmission rate vout2 of sender 2 around this steady state and study
sender one’s response.

5.2 Obtaining the Transfer Function

After we have defined the input and output signals, we determine the Transfer Function (TF) of the
linearized system according to Sect. 4. The obtained TF is quite complex. However, the influence of
some terms is marginal for sufficiently large capacity values:

R�
√

4k1k3vinc

k2
(19)

In this region, the TF can be simplified to

H(s) = − Rk2

s2 + sk3 + Rk2
(20)

From this TF, we conclude that C3A acts as a second order low pass filter to a perturbation of sender
two’s transmission rate, because (20) has no finite zeros (roots of the TF’s numerator) and two poles
(roots of the TF’s denominator).

We have to distinguish three different ways a second order system behaves: The system is
under-dampened if the two poles are complex conjugate, it is said to be over-dampened if they are
real, and the system is critically dampened for the special case where the real poles coincide.

For C3A the nature of the poles only depends on the channel capacity R and the reaction
coefficients k2 and k3. This indicates that the behavior of C3A can be controlled by these parameters.
We further conclude that C3A is bounded-input/bounded-output stable, because its poles always
have negative real part for positive values of R, k2 and k3.

Figure 3 shows the TF for three parameter sets: A and B are under-dampened, whereas C is
over-dampened.

5.3 Step Response

Other than the transfer function, the step response gives us a more intuitive perception of how C3A
behaves in face of a sudden competition. Figure 4 depicts the response of sender one’s transmission
rate when sender 2 starts to transmit on the same channel with a rate of half the channel capacity:
vout2(t→ 0−) = 0 pkt/s, vout2(t→ 0+) = R/2; the amplitude (y-axis) is normalized to the channel
capacity R. In order to reveal the properties of C3A in the time domain, we first derive the natural
frequency ωn =

√
Rk2 and the damping ratio ζ = k3/(2

√
Rk2) from (20). From these two quantities

and according to the nature of the poles, we obtain the settling time, the oscillation frequency, and
the overshoot.

Under-dampened The response of the under-dampened C3A (i.e., for R > k2
3/(4k2)) is an expo-

nentially decaying sinusoid that approaches the final transmission rate (see scenarios A and B in
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Figure 3: Bode diagram showing the response of sender one’s output rate vout1; sender 2 is initially silent;
the injection rate is fixed to vinc = 103 pkt/s; the parameters are chosen as follows:
A: k1 = 0.079 /(pkt s), k2 = 0.1000 /(pkt s), k3 = 10 /s,
B: k1 = 0.079 /(pkt s), k2 = 1.0000 /(pkt s), k3 = 20 /s, and
C: k1 = 0.030 /(pkt s), k2 = 0.0064 /(pkt s), k3 = 6 /s

Fig. 4). In this case, the settling time (i.e., the time that sender 1 takes to adapt its transmission rate)
is given by

tset '
4.6
ζωn

=
9.2
k3

(21)

Another important quantity of under-dampened systems is the oscillation period given by

tosc =
2π

ωn
√

1− ζ2
=

4π√
4Rk2 − k2

3

(22)

Finally, the overshoot quantifies the maximum amplitude of the response, measured from the desired
response of the system:

overshoot [%] = 100 · e
−πζ√
1−ζ2 = 100 · e

− πk3√
4Rk2−k2

3 (23)

The A-curve in Fig. 4 exhibits a small overshoot (16 % of its final value) and a settling time of about
0.92 s. The settling time for scenario B is shorter, but its oscillations are more evident (overshoot of
35 % and an oscillation period of 0.46 s).

Over-dampened If C3A is over-dampened (i.e., for R < k2
3/(4k2)), its response is a decaying

exponential (see scenario C in Fig. 4). In this mode, the equations for the settling time is slightly
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Figure 4: Step response of the normalized output rate vout1/R of sender 1 to a sudden start of sender 2:
vout2(t→ 0+ s) = R/2; the injection rate is fixed to vinc = 103 pkt/s; the parameters are chosen as follows
(same as in Fig. 3):
A: k1 = 0.079 /(pkt s), k2 = 0.1000 /(pkt s), k3 = 10 /s,
B: k1 = 0.079 /(pkt s), k2 = 1.0000 /(pkt s), k3 = 20 /s, and
C: k1 = 0.030 /(pkt s), k2 = 0.0064 /(pkt s), k3 = 6 /s.

different, because there are no oscillations:

tset '
5

(ζ −
√

ζ2 − 1)ωn
=

10

k3 −
√

k2
3 − 4Rk2

(24)

The C-curve in Fig. 4 is characterized by a damping ratio of 1.19 and approaches the final steady
value in 3.6 s.

5.4 Derived Guidelines for a C3A Implementation

Our analysis of the abstract reaction network of C3A reveals several important insights about its
behavior. In order to build a real protocol implementation of C3A, we have to determine “good”
parameters for the reaction coefficients k1, k2, and k3, and the injection rate vinc. Thereby, our main
objective is to obtain a short settling time and a small overshoot.

Interestingly, the behavior of C3A only depends on the channel capacity R and the two parame-
ters k2 and k3, but neither on k1 nor on vinc, if we assume that the channel capacity R is large enough
according to (19).3 The transmission coefficient k1 and the injection rate vinc define how aggressive
the packets are sent and how aggressive this rate increases, respectively. But since the negative
feedback from lost packets is a linear function of the transmission rate, the rate-throttling behavior
is as aggressive as the transmission strategy. That is, the effects of k1 and vinc approximately cancel
each other out; the two parameters only marginally influence the behavior of our abstract C3A
model.

The coefficients k2 and k3 define how C3A reacts to lost packets. According to (21), the settling
time shrinks for larger values of k3. Intuitively, this makes sense as k3 specifies how fast information
from lost packets is destroyed. On the other hand, the parameter k2 defines how aggressively
the transmission rate is reduced for each lost packet. As (23) suggests, the smaller k2 is w.r.t. k3,

3The parameters k1 and vinc however co-decide for which capacity values the simplification holds.
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Figure 5: Comparison between the analytically predicted response and 1000 OMNeT++ simulation runs of
the chemical congestion control algorithm. Parameter set A: k1 = 0.079 /(pkt s), k2 = 0.1 /(pkt s), k3 = 10 /s,
vinc = R = 1000 pkt/s.

the more the system integrates the feedback over time and the more overshoot it produces in its
response.

Thus, as a general recipe, we would like k2 and k3 to be large in order to obtain a quick and
accurate response. We also want k1 and vinc to be large so that C3A quickly probes for the channel
capacity, even though this is not reflected by the transfer function. But at the same time we have to
keep k1, k3, and vinc small compared to k2 such that our assumption in (19) still holds.

5.5 Simulation Results

In order to complement our analysis, we compare the analytically predicted response of C3A
to empirical results obtained from OMNeT++ simulations [29, 10]. We implemented C3A with
parameter set A (see Fig. 3) that shows a quick adaptation with moderate overshoot, and we
simulated the same sudden competitive burst from vout2 = 0 pkt/s to R/2.

Figure 5 compares the step response of vout1 as predicted by our analysis (continuous line) to
the average over thousand simulation runs. Additionally, the light gray lines show the response
of fifty randomly-picked simulation runs. The real C3A protocol implements a stochastic process,
whose realization is a specific simulation run with seemingly chaotic behavior. However, according
to chemical kinetics [7], the average over many runs is deterministic and should reflect the ODE
approximation, which was the basis for our analytical approach. Our analysis predicts a settling
time of tset ∼ 0.92 s, an overshoot of approximately 16.3, %, and dampened oscillation with a
period of tosc ∼ 0.73 s. The simulation results are close to these numbers, but a deviation is clearly
recognizable.

5.6 The Influence of Stochasticity in the C3A Implementation

There are several reasons for the discrepancies between the predicted response, the average of
simulation runs, and a certain particular simulation run.

14

M. Monti, T. Meyer, M. Luise, C. Tschudin Analyzing CNPs with a Signal Processing Approach



The law of large numbers The reason why a single simulation run deviates from the average
of all runs roots in the law of large numbers. The packet scheduler of C3A and similar CNPs is a
stochastic algorithm that mimics real chemical reactions [22]. The more packets a CNP deals with,
the more closely a simulation run (realization of the stochastic process) will approach its average.
This well-known behavior of the law of large numbers was derived for real chemical reactions in
[8] and [9]. According to these findings, a CNP behaves more deterministically, the higher the fill
levels of its packet queues are, i.e., the higher the molecule concentration are.

Differences in the state-space representation The fact that even the average over many simula-
tion runs deviate from the predicted behavior can be explained by the difference in the state-space
representation. The concentration values in the ODEs are real-valued numbers, whereas in the
real implementation of C3A, concentrations represent packet quantities – the state space is discrete.
While the continuous ODE model changes the output rate with infinite resolution and smoothly
stabilizes and optimizes it, a real implementation may produce oscillations as we argue in the
following paragraphs.

Example of the discrepancy between analytical prediction and simulation Fig. 5 shows small
differences between our analytical prediction and the real implementation. For example, when
sender 2 is silent, our analysis predicts that sender 1 is able to send with a transmission rate equal
to the channel capacity, while the C3A implementation is not able to exploit the full capacity.

We can either configure the C3A implementation with high or with low molecule concentrations.
When we parametrize the protocol such that the resulting concentrations are high, the protocol
is able to achieve a stable transmission rate as predicted, but only at the cost of high packet loss.
This clearly is undesirable. If, on the other hand, the concentrations are kept low, the packet loss
rate can be reduced by letting the protocol quickly and immediately react to a single lost packet.
In this mode, the concentration of the L-molecule is either zero or one. A feedback based on such
a discrete signal leads to (intended) oscillations where the protocol continuously alternates its
transmission behavior between linear increase (in absence of packet loss) and exponential decrease
(in presence of packet loss). The exact timing of these two phases is different from run to run,
due to the stochasticity of the scheduling algorithm. For the same reason, the transmission rate
is stochastic, which leads to small bursts that trigger too early packet losses. This is why the full
capacity cannot be exploited.

6 Discussion

Our analysis approach to CNPs bases on a (deterministic, continuous-valued) ODE description of
abstract chemical reaction networks proposed in [8]. On one hand, this approximation enables us
to have a general prediction of the average behavior of protocols, but on the other hand, we miss
some particular features of the stochastic process. Specifically, the more packets a CNP deals with,
the more closely the analysis will predict every possible realization of the protocol behavior.

Despite the discrepancies we expect, there are several arguments that support our mean-field
approach: First, CNPs usually operate with high molecule concentrations, which lowers possible
differences between empirical results and our prediction. Second, in an early stage, designers
are often more interested in understanding the average trend of their protocols rather than the
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stochastic details. Third, by taking a macroscopic view on the protocol dynamics, we are able to
quickly detect key parameters of a CNP and understand how these parameters should be calibrated
in order to obtain specific protocol features. This is hardly possible for the detailed stochastic
treatment of complex CNPs.

Linearizing the system around the steady state is another simplification we suggested in order
to study complex systems. This additional simplification is feasible in many cases, for example,
when we are interested in how protocols evolve starting from stable initial conditions.

The strength of our analysis lies in the possibility to automatically generate a generic matrix
description of an arbitrary CNP. We just have to determine the input perturbation vector, and
obtain a transfer function matrix, whose elements describe all different aspects of the protocol’s
dynamics we are interested in.

Finally, we have to note that the analysis proposed in this paper does not consider propagation
delays. In previous simulations of C3A [22, 24], we also studied the influence of non-zero round-trip
times. We proposed in [22, Sect. 12.1.2] to model such delays as additional first-order reactions
within the chemical model. The approach proposed in this paper can then be applied directly to
the extended model.

7 Conclusion

In this paper, we proposed an approach to analyze and understand dynamics of Chemical Net-
working Protocols (CNPs). The analysis exploits tools from several well-established fields: a model
linearization proposed in Metabolic Control Analysis (MCA), the state-space description of Linear
Time Independent (LTI) models classically used in control theory, and the characterization of the
system in the frequency domain, central to signal theory. This analysis leads to general observations
about the average behavior of CNPs.

Our approach starts with an automatically generated deterministic description of the protocol
as chemical reaction network, the behavior of which is approximated by ODEs. The larger the
packet buffers of CNPs are, the more accurate our analysis is. Future work could be oriented
towards a rigorous treatment of the stochastic aspects of CNP dynamics, i.e., the exact microscopic
description of CNPs, valid also when dealing with a very low number of packets. We envision to
still use our deterministic approach in order to determine the systemic trajectory, but to extend it by
an analysis of the superimposed stochastic noise. The latter would describe the deviation between
the deterministic model and the real protocol behavior. This would enable protocol designers to
define the margins in which the protocol should operate despite stochastic fluctuations.

In the future, we would also like to improve the analysis presented in this paper by incorporating
delays into the chemical model. We believe that we can still use the approach presented here by
extending special reactions that model these delays.
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