
Underlay Fusion of DNS, ARP/ND, and Path
Resolution in MANETs

Christophe Jelger, Christian Tschudin
Computer Networks Research Group

University of Basel, Bernoullistrasse 16,
CH-4056 Basel, Switzerland�

Christophe.Jelger, Christian.Tschudin � @unibas.ch

Abstract— Name resolution is a key pillar of the fixed
Internet: Without the existing distributed hierarchical
infrastructure of name servers, neither eMail (MX records)
nor web browsing (all links are expressed with logical
names) would be possible anymore. A DNS substitute
has to be provided for MANETs which permits, both in
isolated network mode as well as in the mesh network
case, to use logical names at the application level.

In this paper we present a backward compatible dis-
tributed and decentralized name resolution scheme for
MANETs: The particularity of our scheme is that name
resolution, address resolution (IPv4) or neighbor discovery
(IPv6) as well as routing path establishment are merged
in a single operation. Using the underlay approach of
LUNAR we integrate DNS logic at layer 2.5 such that
classic Internet applications as well as operating systems
settings and libraries do not have to be modified.

I. INTRODUCTION AND MOTIVATION

While there has been quite a large amount of research
related to unicast routing in mobile ad hoc networks
(MANETs), less effort has been made in order to provide
name resolution as a standard feature of MANET routing
protocols. However, it is impossible to imagine the
adoption of wireless ad hoc networking without name
resolution: users simply do not deal with IP addresses,
and this is even more true with 128-bit long IPv6
addresses. If we want to witness a wider adoption
of MANET related technologies and protocols, name
resolution MUST become a standard core element of
MANET networking.

In the Internet, name resolution is performed via
the Domain Name System (DNS) which relies on a
hierarchy of servers distributed around the world. While
this architecture has proven to work very well in the

This work was carried out during the tenure of an ERCIM
fellowship (see http://www.ercim.org for details).

fixed Internet, it is not suitable to MANETs as has also
been pointed out by [1]: in a MANET, one cannot rely
on the presence of a DNS server..

A more natural way of performing name resolution in
a MANET is to use a decentralized approach in which
a node of the MANET replies to a broadcasted name
request for which it is the target. Different flavors [1]-
[2] of such an approach can be found in the literature.
Although the operation of distributed name resolution
resembles the route discovery procedure of a reactive
routing protocol, it is more difficult to implement than
routing since the DNS operation is hard coded in current
operating systems and applications. As detailed in the
next section, there are serious implementation issues
that need to be resolved. In this paper, we extend
the functionalities of an underlay routing protocol with
an optimized distibuted name resolution scheme which
merges the resolutions of names and link-layer addresses,
and the establishment of multi-hop paths in a single
network operation.

II. NAME RESOLUTION IN MANETS

A. General constraints

The implementation of a DNS-compatible name res-
olution system in a MANET is challenging in many
ways. One issue is that dynamic name resolution in
traditional IP networks at all time assumes that there
exists a reachable DNS server: the whole operation of
name resolution collapses if no server is available. Even
worse, all operating systems do not even try to send
a name request if no DNS server is configured in the
system: if a node is not configured with a DNS server
address, it simply assumes that dynamic name resolution
is not available. This means that in a MANET where
no DNS server is present, one must trick the operating



system so that it falsely believes that a name server is
present.

Moreover, a name resolution scheme for MANETs
should not prevent a node from resolving names in
the classical way when it is connected in a wired
infrastructure-based network. In particular, the existing
APIs and related protocols should remain unchanged
since it is not conceivable to modify the huge amount
of existing applications such as web browsers and email
clients.

B. Existing approaches

One natural way of performing name resolution in
a MANET is to use a distributed and decentralized
approach [1]-[2] similar to what is done by on-demand
MANET routing protocols such as AODV [3] and
DSR [4]. With such a scheme, a node that wishes
to resolve a name broadcasts a specific name request
message in the entire MANET. If a node of the MANET
sees its name in the request, it replies to the originator
of the message with a name reply message that indicates
its current IP address.

While this on-demand request-reply procedure seems
straightforward, it is quite difficult to implement in real
systems because they are strongly constrained by the
classical operation of name resolution. By default, a node
configured with a DNS server address sends its unicast
DNS request messages via the network interface towards
the server. In an autonomous MANET, this procedure
becomes irrelevant and it should be replaced with a
specifically designed mechanism.

One solution is to add hooks and dedicated applica-
tions in the user process space. In [1], each node runs a
MANET-specific name server that handles name requests
within the ad hoc network. Traditional DNS requests
sent by a MANET node are captured and translated
into MANET-specific name request messages. Note that
special filtering rules must also stop the classical DNS
request from being transmitted on the ad hoc network.
One difficulty with this scheme is to detect when the
filtering rules should be removed, i.e. for example when
the MANET becomes connected to the Internet via a
wired network where a DNS server is available. Another
solution proposed in [2] requires modifications in both
the IP stack and the name resolver library. Unfortunately,
these patching requirements can limit the adoption of
such a scheme as most users are often relunctant or
unqualified to apply kernel patches to their operating
systems.

III. UNDERLAY FUSION : MERGING PROTOCOLS

To support decentralized name resolution within a
MANET, we have extended the original operation of a
reactive routing-only protocol. In particular, we combine
IPv4 and IPv6 path setup, link-layer address resolution
(ARP for IPv4, and neighbor discovery (ND) [5] for
IPv6), and name resolution in a single request/reply
operation. In most cases, a name request procedure
is indeed triggered by an application that wishes to
communicate with some host. One can therefore perform
path setup with the name instead of the IP address. More-
over, this single operation serves to gather all necessary
information that permits the initiating node to answer
ARP and ND request without having to put a second
query on the MANET. Part of the DNS operation is now
implemented at layer 2.5 instead of the application layer.

A. Underlay approach

To explore the feasibility of this approach, we use
the LUNAR [6] routing protocol, which positions it-
self between the IP and Ethernet layers, creating a
subnet illusion in a MANET. This underlay leads to
immediate implementation benefits as LUNAR has full
control on all traffic coming in and out of a node. In
particular, the historical barriers between the somehow
isolated protocols involved at the network layer (i.e.
name resolution, link-layer address resolution, routing,
address configuration) all disappear: this next genera-
tion LUNAR (LUNARng) becomes a single entry point
where all networking information flows. In contrast to
existing approaches, we do not need to redirect and block
traditional DNS request messages as they naturally flow
through the LUNAR module.

In practise, LUNAR is implemented as a Linux kernel
module that can be dynamically loaded on a host. Upon
startup, the LUNAR module creates a virtual network
interface that is internally linked with the real wireless
interface connected to the MANET. Hence, all traffic
that flows via the virtual interface is seen by the LU-
NAR module which can specifically react to particular
messages. For example, LUNAR implements a virtual
DHCP server which assigns the IP address to the virtual
interface when the user wants to automatically configure
this interface via DHCP. This mechanism is illustrated
by Fig. 1a. In step 1 of Fig. 1a, a dhcp client sends a
request towards the LUNAR interface. This request is
intercepted by the DHCP engine of LUNAR which ran-
domly chooses an address within a pre-defined LUNAR
subnet (e.g. 192.168.42.0/24), and which then checks
the uniqueness of this address by trying to build a path



Fig. 1. LUNAR underlay operation

towards this address (steps 2 and 3). If the path setup
fails (i.e. indicating that the address is not used), a faked
DHCP message is sent to the dhcp client application
(step 4). This message includes the IP address to be used
on this interface, the net.lunar domain name, and the
address of a faked DNS server reachable via the LUNAR
interface.

B. Merging protocols

In a similar way, LUNAR intercepts link-layer address
resolution messages (i.e. ARP for IPv4, and ND for
IPv6) and DNS requests. As we use network pointers
[7] to forward data at the LUNAR layer, path setup and
link-layer address resolution can easily be done by the
name resolution request procedure. This is made possible
since the faked DHCP server provides a faked DNS
server address to the operating system so that it believes
that a DNS server is available in the network via the
LUNAR interface. The interception of a DNS request is
illustrated by Fig. 1b. In step 1 of Fig. 1b, an application
triggers the sending of a DNS request that is intercepted
by the LUNAR DNS engine. This triggers a route request
procedure which uses the name of the target to identify
the expected destination (steps 2 and 3). When the target
discovers its name in the route request message, it sends
back a route reply message which contains its IP address
(steps 4 and 5). Note that this message also contains
the MAC address of the next hop node towards the
target destination: the node which triggered the name
resolution request therefore also immediatly performs
the link-layer resolution usually carried out by the ARP
and ND protocols. The LUNAR module can then send
back a classical DNS reply message to the application
which eventually learns the IP address of the target. At
that point, the network path is already set and the link-

layer address of the next hop node is already known:
the appropriate ARP/ND entry is added by the LUNAR
module in the ARP/ND table. Networking protocols that
are usually carried out independently were successfully
merged in a single operation.

C. net.lunar

In order to distinguish between hostname lookups
within the MANET, and FQDN (Fully Qualified Do-
main Name) requests, we introduce the use of a virtual
namespace called net.lunar. The net.lunar domain name
is configured at startup by the LUNAR module as being
the default domain of a MANET node. When entering
a MANET, it is indeed unlikely that a node can carry
on using the name of the domain it originally belongs
to, since it makes little sense as a MANET might not
even be connected to the Internet. Also the IP address
associated to a node in the global DNS system might not
be valid any more when the node enters a MANET and
potentially uses a different IP address.

Hence, a hostname request (i.e. not fully qualified)
is transformed by the operating system into a net.lunar
request which is regognized by the LUNAR module
as being a MANET name resolution. It thus becomes
possible to identify a simple hostname lookup within
the MANET if the user/application only specifies a
hostname (e.g. the request for cjelger becomes a request
for cjelger.net.lunar). In other words, a user can easily
express its desire to trigger a name resolution inside
the MANET. In contrast to hostname requests, FQDN
requests (e.g. informatik.unibas.ch) are left unchanged
by the operating system and the LUNAR module will
recognize them as being a request for a host located
outside the MANET. If the MANET is connected to the
Internet via a gateway, the classical DNS request can be
forwarded to the gateway which will potentially contact
a traditional DNS server. This extra procedure is however
out of the scope of this paper.

D. Name cache

When possible and to avoid bandwidth waste, LUNAR
also uses a name cache in order to reply to PTR requests
for the net.lunar domain. We remind that the goal of this
inverse resolution procedure is to obtain the DNS name
associated with a given IP address. One must note that
with the traditional DNS operation, a host will send a
PTR request to its DNS server even if it just resolved the
IP address of the corresponding name. This additional
overhead occurs because current operating systems do
not implement a name cache and therefore a previously



resolved name � IP address mapping cannot be re-used
to perform the inverse resolution.

In contrast, if a net.lunar name has recently been
resolved into the corresponding IP address by a given
node N, no PTR request is sent into the MANET if the
node N wants to resolve this IP address into a name. We
keep a cache table in the LUNAR DNS engine in order to
avoid the overhead of sending unnecessary PTR requests
onto the MANET. Finally, to cope with the volatility of
ad hoc networks, the name cache is frequently drained in
order to handle unpredictable address or name changes.

E. Implementation details

In current operating systems, name resolution is a
user-space process which is mainly controlled via a text
file in Unix-like systems (usually /etc/resolv.conf), or the
registry in Windows. In the fixed Internet, this informa-
tion specifies the domain name of the host computer and
a list of addresses of its prefered name servers. While
the name resolution configuration can be edited manually
(i.e. by the root user) or automatically via DHCP, the
contained information is rather static as it is dependent
of the particular networking context of the host computer.
However, in an infrastructure-less MANET there is no
such context, and one must find a way in order to
automatically adapt the name resolver to the specificities
of MANET networking. As already explained in Section
III-A, we use a faked DHCP server in order to configure
the IP address of a faked DNS server reachable via the
LUNAR virtual interface. In practise, the dhcp client
used by the operating system will edit the appropriate
file (or registry entry), and applications will consequently
send their DNS requests via the LUNAR virtual inter-
face. At this point, it becomes possible to capture these
requests and replace them with specific LUNAR-style
name requests.

IV. OPEN ISSUES

In this section we discuss three issues: name collis-
sions, network partition merging, and user discovery.

One problem to still handle in LUNARng is the
case of two nodes picking identical hostnames in their
FQDN. For example, two nodes respectively named
john.domain1.net and john.domain2.com will both end
up being identified inside the MANET as john.net.lunar.

To resolve this issue, we plan to add a mechanism
to check for duplicate names at the same time when
we check for duplicate IP addresses i.e., with the same
RREQ message. Similar to picking another random
IP address in case of a collission, LUNAR will start

adding a suffix to the hostname and test again with the
new name. For the previous example, the two nodes
would thus end up being named john.net.lunar and
john33.net.lunar.

Note that the new name is only used inside LUNAR
i.e., at layer 2.5 and is mostly relevant to the other
MANET nodes trying to contact the node with the
new name: No attempts are made to change the host’s
original FQDN (john.domain2.com), which (a) would be
a challenging implementation excercise and (b) could
also be an unwanted source of confusion to the end
user. In other words: LUNARng keeps a mapping table
between the new names and the LUNAR IP addresses,
not the old (derived from FQDN) names and the old IP
addresses. To allow users to distinguish between john
and john33, we plan to use at the LUNAR level a
node/user directory system (e.g. via the /proc filesystem
in Linux) which shows the content of the cache i.e., a
peer’s LUNAR name as well as its original name.

The second problem relates to the case of merging
network clouds: This can lead to a MANET where
some hosts have identical IP addresses and/or identical
LUNAR names. We (already) solve this problem by
introducing stealth “host identifier tags”: As a HIT we
use a random 128-bit string which becomes the entity
which LUNAR uses to re-establish paths to a peer. That
is: With either name resolution or plain ARP or ND
resolution, we bind a peer’s name and address to its HIT.
All subsequent path lookup will be carried out with the
HIT, not the name or IP address. That is: as long as
our name cache contains an entry for a peer, we will
address this peer using its HIT. Any other node joining
the network with a colliding name or IP address will
not be discovered by the LUNAR path establishment
procedure as it has a different HIT. This strategy, which
was proposed by [8] and which is now also considered in
[9], permits to maintain TCP connections although new
hosts appeared in the MANET with the same IP address.

The third issue is user or host discovery, which is an
important element of spontaneous networking. Again we
will use the binding cache for providing this information,
where we see three ways of populating its entries: A first
one is the LUNAR mechanism when a path is explicitely
established between two peers; The second mechanism
would rely on passively populating the cache by listening
to RREQ messages which carry all the initiator’s coor-
dinates. The third would be the use of explicit discovery
request by the user and would use LUNAR’s broadcast
support to explicitely solicit presence messages from any
LUNAR neighbor. However, routes will still be built on-



demand, preferably by specifying the LUNAR names
provided by the directory system.

V. CONCLUSION

LUNARng has been successfully implemented on
the Linux operating system as an easy-to-use kernel
module1. LUNARng (i.e. LUNAR with name resolu-
tion) is a first step towards a functional re-composition
of IP-related protocols outside layering constraints. By
merging all the information flowing to and from the IP
layer, LUNARng optimizes network operations that are
traditionaly carried out by independent protocols.

In this paper, we have shown and demonstrated that
the underlay scheme permits to merge the network oper-
ations of name resolution, link-layer address resolution,
and network path setup in a unique and efficient proce-
dure. In particular this is done without any modifications
of the existing operating systems, applications, and name
resolver library. Because current MANET-best-practises
break many of the traditional paradigms assumed by IP
networking, the use of an underlay approach is very
appealing as it provides full control on the semantics
and behavior of IP-related network protocols.

1See http://core.it.uu.se/AdHoc/ImplementationPortal

REFERENCES

[1] P. Engelstad, D. V. Thanh, and G. Egeland, “Name Resolution
in On-Demand MANETs and over External IP Networks,” in
Proceedings of IEEE ICC’03, May 2003, Anchorage, Alaska.

[2] J. Jeong, J. Park, and H. Kim, “Name Service in IPv6 Mobile
Ad-hoc Network connected to the Internet,” in Proceedings of
IEEE PIMRC’03, Sept. 2003, Beijing, China.

[3] C. Perkins, E. Belding-Royer, and S. Das, “RFC 3561 - Ad hoc
On-Demand Distance Vector (AODV) Routing,” July 2003.

[4] D. Johnson, D. Maltz, and Y.-C. Hu, “Internet Draft - The
Dynamic Source Routing Protocol for Mobile Ad hoc Networks
(DSR), draft-ietf-manet-dsr-10.txt,” July 2004.

[5] T. Narten, E. Nordmark, and W. Simpson, “RFC 2461 - Neighbor
Discovery for IP Version 6 (IPv6),” December 1998.

[6] C. Tschudin, R. Gold, O. Rensfeld, and O. Wibling, “LUNAR -
A Lightweight Underlay Network Ad-Hoc Routing Protocol and
Implementation,” in Proceedings of NEW2AN’04, Feb. 2004, St.
Petersburg, Russia.

[7] C. Tschudin and R. Gold, “Network Pointers,” in Proceedings
of First ACM Workshop on Hot Topics in Networks (HotNets-I),
October 2002, Princeton, NJ, USA.

[8] N. Vaidya, “Duplicate Address Detection in Mobile Ad Hoc
Networks,” in Proceedings of ACM Mobihoc’02, June 2002,
Lausanne, Switzerland.

[9] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, “In-
ternet Draft - Host Identity Protocol, draft-ietf-hip-base-02.txt,”
February 2005.


