A Signal Processing Approach to the Analysis of Chemical Networking Protocols

Author
Massimo Monti

Supervisors
Prof. Marco Luise (University of Pisa)
Prof. Filippo Giannetti (University of Pisa)
Prof. Christian Tschudin (University of Basel)
Thomas Meyer (University of Basel)
Chemically Inspired Communication System

Communication Model

Chemical Model

Congestion Avoidance CNP (T.Meyer, to be published)

Dynamics
A Signal Processing Approach to the Analysis of Chemical Networking Protocols

Concept of Chemical Networking Protocols (CNPs)

Equilibrium
Robustness
Self-Healing
Self-Optimization
Self-Protection

Goal

Chemical Metaphor

Molecules ↔ Packets
Chemical vessel ↔ Communication network nodes
Chemical reactions ↔ Communication links
Chemical virtual machines ↔ Computers with standard CPU

Chemical model implementation: Fraglets simulator.
User Information

User information is encoded inside packets.

A certain type of molecules (*species*) contain the same string of symbols.

e.g. [node2 HELLO WORLD]

System State Information

System state information is encoded in the *packet rate* itself.

- Concentration of a chemical species ≡ Number of molecules of that species.
- Reactions happen according to the «Law of mass action»:

 \[
 \text{Reaction Rate} \propto \text{Species concentration}
 \]

- Randomize queue entries
- Schedule the service
 - Forwarding as fast as possible
A Signal Processing Approach to the Analysis of Chemical Networking Protocols

CNP Properties

Dynamics Forecast

- Communication protocol implementations \(\rightarrow\) Abstract chemical models
- Chemical model dynamics are analyzable
- Dynamics analysis \(\rightarrow\) Chemical model optimization

Protocol implementation optimization
The Chemical Master Equation (CME)

The chemical model as

\[\text{a continuous time discrete space Markov jump process} \]

(System state equals species concentration)

Dynamics of the system probability distribution governed by the CME

Features:

- Exact analysis of the \textit{stochastic} dynamical behavior of a model
- Very high computational complexity
- Solution not always possible
Standard Analysis of Network Dynamics (2/2)

The Differential Rate Equations Approximation (DREs)

Deterministic approximation of the exact stochastic behavior.

Features:

- Decrease of the computational complexity (still high)
- High concentration systems required
- Dependence on initial condition
Chemical networks as systems of blocks and interconnections. Concentration seen as a continuos-time continuos-value signal.

- Transfer function description
 - Generality of results
- Based on Differential Rate Equations (DREs) approximation
 - Low computational complexity
 - Deterministic approximation
 - Dependence on initial condition
The Disperser CNP

Disperser Features:
Species ≡ Vessels ≡ Nodes
Impulse input ≡ Injexion of molecules
Distributed average computation
Molecules equally distributed over the network

Connections Typology

Parallel of N-Node

Series of N-Node

Loop Network

Elementary Reactions

I Output

N Output
A Signal Processing Approach to the Analysis of Chemical Networking Protocols

Simulink Schematic

Node 1

Node 2

Node 3

Node 4
A Signal Processing Approach to the Analysis of Chemical Networking Protocols

Analysis Results (1/2)

Frequency Transforms

The Disperser CNP

Laurea specialistica
19 July 2010

Massimo Monti
A Signal Processing Approach to the Analysis of Chemical Networking Protocols

Analysis Results (2/2)

Impulse Responses

The Disperser CNP

Laurea specialistica

19 July 2010

Massimo Monti
State Variable Representation

\[
\begin{align*}
\dot{x}(t) &= A \cdot x(t) + B \cdot u(t) \\
y(t) &= C \cdot x(t) + D \cdot u(t)
\end{align*}
\]

- \(A\) State matrix
- \(B\) Input matrix
- \(C\) Output matrix
- \(D\) Direct transmission matrix

Analyzed systems must be **Linear Time Invariant (LTI)**
A Signal Processing Approach to the Analysis of Chemical Networking Protocols

System Control Theory (2/2)

Frequency Transform

Frequency characterization of species concentration

\[C(s) = \frac{O}{(I \cdot s - A)^{-1} B + D} \]

Dynamical behavior of the network

\[Y(s) = \frac{1}{s} \cdot C(s) \Leftrightarrow y(t) \]

Analyzed systems must be Linear Time Invariant (LTI)
A Signal Processing Approach to the Analysis of Chemical Networking Protocols

A Non-Linear CNP

Non-Linear Chemical Model

- Traffic Generation of Tx.1
- Tx.1 Output Rate
- Tx.2 Output Rate
- Channel Limitation
- Actual Network Output Rate
- Selective Feedbacks

DREs with Non-Linearities

- Species
- Molecules
- Reactions
 - Chemical Homeostasis
 - Species Dilution Flow
- Reaction Coefficients

\[
\begin{align*}
\dot{w} &= k_1 + 0 - k_3 \cdot w \cdot l + 0 \\
\dot{i} &= 0 + k_2 \cdot w - \frac{k_2 \cdot w}{k_2 \cdot w + v_{in}} + 0 - k_4 \cdot l
\end{align*}
\]
A Signal Processing Approach to the Analysis of Chemical Networking Protocols

Metabolic Control Analysis to Non-Linear CNPs

Non-Linear Chemical Model

DREs with Non-Linearities

Concept: System linearization around a fixed point (steady states)

\[
\dot{s}(t) = N \cdot v(s(t), p(t)) \quad \rightarrow \quad \dot{x}(t) = N \cdot \frac{\partial v}{\partial s} \cdot x(t) + N \cdot \frac{\partial v}{\partial p} \cdot u(t)
\]

State Variable Representation

\[
A = N \cdot \left. \frac{\partial v}{\partial s} \right|_{(s^{st}, p^{st})} \quad B = N \cdot \left. \frac{\partial v}{\partial p} \right|_{(s^{st}, p^{st})} \quad O = I \quad D = 0
\]
A Signal Processing Approach to the Analysis of Chemical Networking Protocols

Analysis Results (1/2)

Frequency Transform $W^{(n)}(s)$

Diagram showing signal processing components and their interactions.

Laurea specialistica

19 July 2010

Massimo Monti
Step Response

Analysis Results (2/2)

Laurea specialistica
19 July 2010

Massimo Monti

Telecommunications Engineering
Transmission and Communication Systems

A Signal Processing Approach to the Analysis of Chemical Networking Protocols

Step Response

V_{out}

V_{in}

V_{out}

V_{out}

$k_3=1, k_4=1$

$k_3=1, k_4=10$

$k_3=1, k_4=50$

$k_3=0.01, k_4=10$

$k_3=1, k_4=10$

Amplitude

Time (sec)
Discussion

Protocol behavior was not easily predictable.

- Now, all linear chemical networks are analyzable, with similar procedures to those shown.
- Non-linear networks are linearizable (MCA), with the side effect of a high computational complexity.
- Even links with delay have been analyzed (not shown).

Bi-stable systems.
- Fixed point near the saddle point.
- Stochasticity of CNPs briefly introduced.

Limits & Future
A Signal Processing Approach to the Analysis of Chemical Networking Protocols

Thank You

Massimo Monti